Skip to main content

DSPy

Project description

DSPy: Programming—not prompting—Foundation Models

Documentation: DSPy Docs

Downloads Downloads


DSPy is the open-source framework for building high-quality, modular AI systems by programming—rather than prompting—language models. It provides abstractions and algorithms for optimizing the prompts and weights in LM programs, ranging from simple classifiers to sophisticated RAG pipelines and Agent loops.

Instead of writing brittle LM-specific prompts, you write compositional code and use DSPy optimizers to teach different models like GPT-4o or Llama-3.2 to deliver higher quality outputs or avoid specific failure patterns. In essence, DSPy optimizers then compile your high-level code into low-level computations, prompts, or weight updates that align your LM with your program’s structure and metrics.

DSPy stands for Declarative Self-improving Python. This recent lecture is a good conceptual introduction. Our Discord server is a great place to meet the community, seek help, or start contributing.

Documentation: dspy.ai

Please go to the DSPy Docs at dspy.ai

Installation

pip install dspy

To install the very latest from main:

pip install git+https://github.com/stanfordnlp/dspy.git

📜 Citation & Reading More

[Jun'24] Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs
[Oct'23] DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines
[Jul'24] Fine-Tuning and Prompt Optimization: Two Great Steps that Work Better Together
[Jun'24] Prompts as Auto-Optimized Training Hyperparameters
[Feb'24] Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models
[Jan'24] In-Context Learning for Extreme Multi-Label Classification
[Dec'23] DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines
[Dec'22] Demonstrate-Search-Predict: Composing Retrieval & Language Models for Knowledge-Intensive NLP

To stay up to date or learn more, follow @lateinteraction on Twitter.

The DSPy logo is designed by Chuyi Zhang.

If you use DSPy or DSP in a research paper, please cite our work as follows:

@inproceedings{khattab2024dspy,
  title={DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines},
  author={Khattab, Omar and Singhvi, Arnav and Maheshwari, Paridhi and Zhang, Zhiyuan and Santhanam, Keshav and Vardhamanan, Sri and Haq, Saiful and Sharma, Ashutosh and Joshi, Thomas T. and Moazam, Hanna and Miller, Heather and Zaharia, Matei and Potts, Christopher},
  journal={The Twelfth International Conference on Learning Representations},
  year={2024}
}
@article{khattab2022demonstrate,
  title={Demonstrate-Search-Predict: Composing Retrieval and Language Models for Knowledge-Intensive {NLP}},
  author={Khattab, Omar and Santhanam, Keshav and Li, Xiang Lisa and Hall, David and Liang, Percy and Potts, Christopher and Zaharia, Matei},
  journal={arXiv preprint arXiv:2212.14024},
  year={2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dspy-2.5.30.tar.gz (252.2 kB view details)

Uploaded Source

Built Distribution

dspy-2.5.30-py3-none-any.whl (332.5 kB view details)

Uploaded Python 3

File details

Details for the file dspy-2.5.30.tar.gz.

File metadata

  • Download URL: dspy-2.5.30.tar.gz
  • Upload date:
  • Size: 252.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dspy-2.5.30.tar.gz
Algorithm Hash digest
SHA256 4e426c36939fbd474b35efea4ce3a0088439c24eefd8910b35077178d6b66964
MD5 289dd20f0722a645e51516aa727a53e0
BLAKE2b-256 fa916a6e3d40146424ae0d2418a0b80ce782d95d823da7ea4b8aa510d07e9f84

See more details on using hashes here.

File details

Details for the file dspy-2.5.30-py3-none-any.whl.

File metadata

  • Download URL: dspy-2.5.30-py3-none-any.whl
  • Upload date:
  • Size: 332.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dspy-2.5.30-py3-none-any.whl
Algorithm Hash digest
SHA256 396652687aacd4d546875a7803103710ef64791f919db2837b2eca8a5da6aea2
MD5 88b7ada582b6d50c659e66047e0b3aa0
BLAKE2b-256 15ea6526b90ed0701a96a88f3597f0769bfb43e7adc83828bb9135ce12ac0991

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page