Skip to main content

TODO

Project description


.. raw:: html

<div align="center">

.. raw:: html

</div>

Intro
-----

**Detox** is an open source software library for machine learning
security. It contains tools for adversarial example generation and
provides a framework for building new types of attack methods.

Currently in the dev stage.

Attacks
-------

Available attack algorithms implemented in Detox:

- Fast Gradient Methods (FGM/FGSM)
```Tutorial`` </tutorial/source/fgsm.ipynb>`__
- Basic Iterative
```Tutorial`` </tutorial/source/basic_iterative.ipynb>`__
- Momentum Iterative
```Tutorial`` </tutorial/source/momentum_iterative.ipynb>`__
- DeepFool
- Universal Adversarial Perturbation (UAP)
- Jacobian-based Saliency Map Approach (JSMA)
- One Pixel Attack
- LBFGS
- Carlini Wagner L2
- Carlini Wagner L-inf
- Feature Adversaries
- Boundary Attack
- Elastic Net
- Natural Adversarial Examples (NAE)

The Team
~~~~~~~~

Detox is a community driven project. The project was initiated by
machine learning security team @ `KakaoBrain <kakaobrain.com>`__.

.. |license| image:: https://img.shields.io/github/license/mashape/apistatus.svg


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtox-0.1.0.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

dtox-0.1.0-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file dtox-0.1.0.tar.gz.

File metadata

  • Download URL: dtox-0.1.0.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dtox-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d397e724ea11eacceae9beb5b455a31e76161d7ba587198557974adabb40082a
MD5 bedc4ee540253dfa6a52fc3368f53607
BLAKE2b-256 497f728694df3e0b43e033e6b0d239dc7ced976db5ff126b3c63c50a8c798276

See more details on using hashes here.

File details

Details for the file dtox-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dtox-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a431e8c1c5cd3cd978e4b8ed6316df254b1c3838ead95d6edeb1d9c847f56393
MD5 09e02fb21bde8838f3b55267d025df9a
BLAKE2b-256 e32fc4a25c97b54fef13ba61e7b3a256fbb45576f4b0055a0b660144388ea7c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page