Skip to main content

A Python package for simultaneous regression and binary classification for educational analytics.

Project description

dualPredictor: An Open-Source Tool for Simultaneously Grade Prediction and At-Risk Student Classification

by Dong, Cheng, and Kan

Introduction

The dualPredictor is a tool that combines regression analysis with binary classification to forecast student academic outcomes and identify at-risk students. This user guide provides a step-by-step walkthrough on how to install and use the dualPredictor package. The figure below illustrates the mechanism of how dualPredictor generates dual output (regression and classification) by combining a regressor and a metric.

Fig 1: Mechanism of how dualPredictor generates dual outputs.

Motivation

The motivation behind the dualPredictor package is to make the use of complex models as simple as possible for all users, regardless of their coding experience. The model package is designed using the same syntax as the popular scikit-learn models, making it easy for users with experience in scikit-learn to quickly start using the dualPredictor. The model attributes, model methods(model.fit(X, y); model.predict(X)) are intentionally designed to mimic the scikit-learn model object, providing a familiar and user-friendly experience for user.

# intialize the model, specify the parameters
model = DualModel(model_type='lasso', metric='f1_score', default_cut_off=2.5)

Table 1: Model methods and attributes (same style as sklearn model object)

Model Methods Description
fit(X, y) - X: The input training data, pandas data frame.
- y: The target values (predicted grade).
- Returns: Fitted DualModel instance
predict(X) - X: The input training data, pandas' data frame.
Model Attributes Description
alpha_ The value of penalization in Lasso and ridge, for OLS alpha = 0
coef_ The coefficients of the model
Intercept_ The intercept value of the model
feature_names_in_ Names of features during model training
optimal_cut_off The optimal cut-off value that maximizes the metric

Installation

You can install the dualPredictor package via PyPI or GitHub. Choose one of the following methods:

PyPI Installation

pip install dualPredictor

GitHub Installation (Recommended; Latest Version)

pip install git+https://github.com/098765d/dualPredictor.git

Getting Started

1. Import the Package: Import the dualPredictor package in your Python environment.

from dualPredictor import DualModel, model_plot

2. Model Initialization: Create a DualModel instance by specifying the regression model type ('lasso', 'ridge', or 'ols'), the metric for cutoff tuning ('f1_score', 'f2_score', or 'youden_index'), and a default cutoff value.

model = DualModel(model_type='lasso', metric='youden_index', default_cut_off=2.5)

3. Model Fitting: Fit the model to your dataset using the fit method.

model.fit(X_train, y_train)
  • X: The input training data (pandas DataFrame).
  • y: The target values (predicted grades).

4. Predictions: Use the prediction method to generate grade predictions and at-risk classifications.

# example for demo only, model prediction dual output
y_train_pred,y_train_label_pred=model.predict(X_train)

# example of 1st model output = predicted scores (regression result)
y_train_pred
array([3.11893389, 3.06013236, 3.05418893, 3.09776197, 3.14898782,
     2.37679417, 2.99367804, 2.77202421, 2.9603209 , 3.01052573,
     2.99974477, 3.11286716, 3.14708887, 2.78737598, 2.88134869,
     3.07517748, 3.17370297, 3.26615469, 3.2328493 , 2.98423656,
     3.02108518, 2.87746064, 3.03491596, 2.89875586, 3.11079315,
     3.23177653, 3.34291929, 2.57402463, 3.27019917, 3.20073168,
     2.94514418, 3.25307175, 3.19145494, 3.15909904, 3.01481681,
     3.07551728, 2.70973767, 3.07226583, 3.04692613, 2.8883649 ,
     2.63833457, 3.03978663, 3.20974038, 3.13091091, 3.42223703,
     3.07012029, 3.01981077, 3.22368756, 2.69376153, 2.93594929,
     2.91493381, 3.22273808, 2.59310411, 3.00767959, 3.21869359,
     2.86065334, 3.16865551, 3.11258742, 2.87948289, 2.64564212,
     2.88646595, 3.48716006, 3.14482003, 3.15513751, 3.05299286,
     3.20858237, 2.63172024, 2.42824269, 2.88352738, 3.0479989 ,
     2.82405611, 3.16516577, 2.94324523, 3.4453079 , 2.48497569,
     3.00081754, 3.04180887, 3.32979373, 3.12686642, 2.90359338,
     2.95509896, 2.96429385, 3.44471154, 3.20251564, 3.08765075,
     2.5607482 , 3.23986551, 3.19644891, 3.16032825, 2.68092384,
     3.04907167, 2.8159268 , 3.05030088, 3.178372  ])

# example of 2nd model output = predicted at-risk status (binary label)
y_train_label_pred
array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
     0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
     1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
     0, 1, 0, 0, 0, 0])
  • y_train_pred: Predicted grades (regression result).
  • y_train_label_pred: Predicted at-risk status (binary label).

5.Visualization: Visualize the model's performance using the model_plot module (Optional)

# Scatter plot for regression analysis
model_plot.plot_scatter(y_pred, y_true)

# Confusion matrix for binary classification
model_plot.plot_cm(y_label_true, y_label_pred)

# Feature importance plot
model_plot.plot_feature_coefficients(coef=model.coef_, feature_names=model.feature_names_in_)

References

  • Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the Youden Index and its associated cutoff point. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 47(4), 458-472.
  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dualpredictor-0.0.13.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

dualPredictor-0.0.13-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file dualpredictor-0.0.13.tar.gz.

File metadata

  • Download URL: dualpredictor-0.0.13.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dualpredictor-0.0.13.tar.gz
Algorithm Hash digest
SHA256 1e187524af3b35efacfa7230944ddf68d1e8ebbfd18c2d4fc1d00fa6e4e6d2a2
MD5 9a2dfce6fb1f096c2f10cc7d973c5d6a
BLAKE2b-256 a303d537f7a51302191f0940e55927a90f623d5ff41a50bf6f54523c245e6d8f

See more details on using hashes here.

File details

Details for the file dualPredictor-0.0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for dualPredictor-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 32c424ee00e86c4db3589a97b17ec8d70ec38144d9eee927e0ab4032728b4f32
MD5 8223ed387ccbe37137fbabcfbb2cedba
BLAKE2b-256 4551e60dccfe84757601b95de8b30956180fc4ab4b41c7ea3744513ea608246e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page