Skip to main content

A Python package for simultaneous regression and binary classification for educational analytics.

Project description

Empowering Educators with An Open-Source Tool for Simultaneous Grade Prediction and At-risk Student Identification

1. Introduction

The package combines regression analysis with binary classification to forecast student academic outcomes. Designed to simplify the implementation of advanced algorithms, this package allows users to train models, make predictions, and visualize results with just 1 line of code with their dataset. This accessibility benefits educators with varying levels of IT expertise, making sophisticated algorithms readily available. The package is easy to install via GitHub and PyPI:

PyPI Link: https://pypi.org/project/dualPredictor/

Github Repo: https://github.com/098765d/dualPredictor/

Ensuring that educators can integrate advanced analytics into their workflows seamlessly.

  • Step 1: Grade Prediction Using the Trained Regressor (Fig 1, Step 1) fit the linear model f(x) using the training data, and grade prediction can be generated from the fitted model

        y\_pred = f(x) = \sum_{j=1}^{M} w_j x_j + b 
    
  • Step 2: Determining the Optimal Cut-off (Fig 1, Step 2)

    The goal is to find the cut-off (c) that maximizes the binary classification accuracy. Firstly, the user specifies the metric type used for the model (e.g., Youden index) and denotes the metric function as g(y_true_label, y_pred_label), where:

    \text{optimal\_cut\_off} = \arg\max_c g(y_{\text{true\_label}}, y_{\text{pred\_label}}(c))
    

    This formula searches for the cut-off value that produces the highest value of the metric function g, where:

    • c: The tunned cut-off that determines the y_pred_label
    • y_true_label: True label of the data point based on the default cut-off (e.g., 1 for at-risk, 0 for normal)
    • y_pred_label: Predicted label of the data point based on the tunned cut-off value
  • Step 3: Binary Label Prediction: (Fig 1, Step 3)

    • y_pred_label = 1 (at-risk): if y_pred < optimal_cut_off
    • y_pred_label = 0 (normal): if y_pred >= optimal_cut_off

Fig 1: How does dualPredictor provide dual prediction output?

2. The Model Object (Parameters, Methods, and Attributes)

The dualPredictor package aims to simplify complex models for users of all coding levels. It adheres to the syntax of the scikit-learn library and simplifies model training by allowing you to fit the model with just one line of code. The core part of the package is the model object called DualModel, which can be imported from the dualPredictor library.

Table 1: Model Parameters, Methods, and Attributes

Category Name Description
Parameters model_type Type of regression model to use. For example: - 'lasso' (Lasso regression)
metric Metric is used to optimize the cut-off value. For example: - 'youden_index' (Youden's Index)
default_cut_off Initial cut-off value used for binary classification. For example: 2.50
Methods fit(X, y) - X: The input training data, pandas data frame.
- y: The target values (predicted grade).
- Returns: Fitted DualModel instance
predict(X) - X: The input training data, pandas data frame.
Attributes alpha_ The value of penalization in Lasso model
coef_ The coefficients of the model
intercept_ The intercept value of the model
feature_names_in_ Names of features during model training
optimal_cut_off The optimal cut-off value that maximizes the metric

Example Usage

from dualPredictor import DualModel

# Initialize the model and specify the parameters
model = DualModel(model_type='lasso', metric='youden_index', default_cut_off=2.5)

# Using model methods for training and predicting
# Simplify model training by calling fit method with one line of code
model.fit(X_train, y_train)
grade_predictions, class_predictions = model.predict(X_train)

# Accessing model attributes
print("Alpha (regularization strength):", model.alpha_)
print("Model coefficients:", model.coef_)
print("Model intercept:", model.intercept_)
print("Feature names:", model.feature_names_in_)
print("Optimal cut-off value:", model.optimal_cut_off)

3. Quick Start

3.1 Dependencies Installation

dualPredictor requires the following libraries to be installed:

  • NumPy: A fundamental package for scientific computing with Python.
  • scikit-learn: A simple and efficient tools for predictive data analysis.
  • Matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python.
  • Seaborn: A Python data visualization library based on matplotlib that provides a high-level interface for drawing attractive statistical graphics. You can install all the dependencies at once using the following command:
pip install numpy scikit-learn matplotlib seaborn

3.2 Package Installation

You can install the dualPredictor package via PyPI or GitHub (Recommended). Choose one of the following methods:

pip install dualPredictor
pip install git+https://github.com/098765d/dualPredictor.git

3.3 Example Code

After installation, start with:

Step 1. Import the Package: Import the dualPredictor package into your Python environment.

from dualPredictor import DualModel, model_plot

Step 2. Model Initialization: Create a DualModel instance

model = DualModel(model_type='lasso', metric='youden_index', default_cut_off=2.5)

Step 3. Model Fitting: Fit the model to your dataset using the fit method.

model.fit(X_train, y_train)
  • X: The input training data (type: pandas DataFrame).
  • y: The target values (type: pandas data series).

Step 4. Predictions: Use the model's predict method to generate grade predictions and at-risk classifications.

# example for demo only, model prediction dual output
y_train_pred,y_train_label_pred=model.predict(X_train)

# example of 1st model output = predicted scores (regression result)
y_train_pred
array([3.11893389, 3.06013236, 3.05418893, 3.09776197, 3.14898782,
     2.37679417, 2.99367804, 2.77202421, 2.9603209 , 3.01052573,
     2.99974477, 3.11286716, 3.14708887, 2.78737598, 2.88134869,
     3.07517748, 3.17370297, 3.26615469, 3.2328493 , 2.98423656,
     3.02108518, 2.87746064, 3.03491596, 2.89875586, 3.11079315,
     3.23177653, 3.34291929, 2.57402463, 3.27019917, 3.20073168,
     2.94514418, 3.25307175, 3.19145494, 3.15909904, 3.01481681,
     3.07551728, 2.70973767, 3.07226583, 3.04692613, 2.8883649 ,
     2.63833457, 3.03978663, 3.20974038, 3.13091091, 3.42223703,
     3.07012029, 3.01981077, 3.22368756, 2.69376153, 2.93594929,
     2.91493381, 3.22273808, 2.59310411, 3.00767959, 3.21869359,
     2.86065334, 3.16865551, 3.11258742, 2.87948289, 2.64564212,
     2.88646595, 3.48716006, 3.14482003, 3.15513751, 3.05299286,
     3.20858237, 2.63172024, 2.42824269, 2.88352738, 3.0479989 ,
     2.82405611, 3.16516577, 2.94324523, 3.4453079 , 2.48497569,
     3.00081754, 3.04180887, 3.32979373, 3.12686642, 2.90359338,
     2.95509896, 2.96429385, 3.44471154, 3.20251564, 3.08765075,
     2.5607482 , 3.23986551, 3.19644891, 3.16032825, 2.68092384,
     3.04907167, 2.8159268 , 3.05030088, 3.178372])

# example of 2nd model output = predicted at-risk status (binary label)
y_train_label_pred
array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
     0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
     1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
     0, 1, 0, 0, 0, 0])
  • y_train_pred: Predicted grades (regression result).
  • y_train_label_pred: Predicted at-risk status (binary label).

Step 5.Visualization: Visualize the model's performance with just one line of code

# Scatter plot for regression analysis 
model_plot.plot_scatter(y_pred, y_true)

# Confusion matrix for binary classification 
model_plot.plot_cm(y_label_true, y_label_pred)

# Model's global explanation: Feature importance plot
model_plot.plot_feature_coefficients(coef=model.coef_, feature_names=model.feature_names_in_)

Fig 2: Visualization Module Sample Outputs

References

[1] Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the Youden Index and its associated cutoff point. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 47(4), 458-472.

[2] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

[3] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.

[4] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.

[5] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dualpredictor-0.0.20.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

dualPredictor-0.0.20-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file dualpredictor-0.0.20.tar.gz.

File metadata

  • Download URL: dualpredictor-0.0.20.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dualpredictor-0.0.20.tar.gz
Algorithm Hash digest
SHA256 23de0477e303b4c095ebffaf4da4c09841486ef3aaf3af550b1c05adeb3f52c2
MD5 3a7538226bb0fcecb6af67b8464bb3da
BLAKE2b-256 1e1c40a16d41b9b768bd085b4a7028bc95f932f3e96988ce5a69a452feeeea5a

See more details on using hashes here.

File details

Details for the file dualPredictor-0.0.20-py3-none-any.whl.

File metadata

File hashes

Hashes for dualPredictor-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 cbe42e202bd0fd77a1b8ce6fd7ef27b09d1838e52c631dc868d0d96e8d60fd90
MD5 3c4224df5aa9e07ce2fd62f144a680a8
BLAKE2b-256 7726e67dde0a94716461ec108d9b1fa94d9ae209ee31cbd2c68bc172a5df5f8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page