This Project uses the calculation of similarities scores of a set of entities in an edge list. To allow for versatile usage, it uses dependency injection to implement it into any application.
Project description
Duplicate-Recognition
This Project uses the calculation of similarities scores of a set of entities in an edge list. To allow for versatile usage, it uses dependency injection to implement it into any application.
Usage
You need to implement all the read/write methods, to keep the project versatile.
For an example on how to use it, see the example, or the following code block:
"""
This is an example implementation of the DuplicateRecognition class.
It won't work. It's just to show, how it could be used.
"""
import logging
import os
from collections import defaultdict
from typing import Dict, Set
from typing import Generator, Tuple, Any
from itertools import chain, islice
from mysql.connector import connect
from duplicate_recognition import DuplicateRecognition, Algorithm, Comparison
logging.basicConfig(level=logging.DEBUG)
def chunks(iterable, size=1000):
# https://stackoverflow.com/a/24527424
iterator = iter(iterable)
for first in iterator:
yield chain([first], islice(iterator, size - 1))
class Entity(DuplicateRecognition):
ID_COLUMN: str = "id"
F_SCORES: Dict[str, float] = defaultdict(lambda: 0, {
"id": DuplicateRecognition.F_SCORE_FOR_EXACT_MATCH,
"company": 1,
"postal_code": 1,
"country": 0.5,
})
MATCHING_ALGORITHM: Dict[str, Algorithm] = defaultdict(lambda: Algorithm.EQUALITY, {
"id": Algorithm.EQUALITY,
"company": Algorithm.PHONETIC_DISTANCE,
"postal_code": Algorithm.EQUALITY,
"country": Algorithm.COUNTRY,
})
THRESHOLDS: Dict[str, float] = defaultdict(lambda: 0, {
"country": 1,
})
NEGATIVE_FIELDS: Set[str] = {"country"}
def __init__(self):
self.connection = connect(
host=os.getenv("MYSQL_HOST"),
port=os.getenv("MYSQL_PORT"),
user=os.getenv("MYSQL_USER"),
password=os.getenv("MYSQL_PASSWORD"),
database="foo",
)
super().__init__()
def get_relevant_entities(self) -> Generator[Dict[str, Any], None, None]:
cursor = self.connection.cursor(dictionary=True)
cursor.execute("""
SELECT DISTINCT * FROM entity
ORDER BY entity.id ASC
""")
return cursor
def get_refresh_pairs(self) -> Generator[Tuple[int, int], None, None]:
cursor = self.connection.cursor(buffered=True)
cursor.execute("""
SELECT entity_edge_list.a, entity_edge_list.b
FROM entity_edge_list
INNER JOIN entity
ON entity.id = entity_edge_list.a OR entity.id = entity_edge_list.b
WHERE entity.change_date > entity_edge_list.change_date
ORDER BY entity_edge_list.a, entity_edge_list.b ASC
""")
return cursor
def get_compared(self) -> Generator[int, None, None]:
cursor = self.connection.cursor(buffered=True)
cursor.execute("SELECT DISTINCT a FROM entity_edge_list")
for row in cursor:
yield row[0]
def get_uncompared(self) -> Generator[int, None, None]:
cursor = self.connection.cursor(buffered=True)
cursor.execute("""
SELECT DISTINCT entity.id
FROM entity
LEFT JOIN entity_edge_list
ON entity.id = entity_edge_list.a
WHERE entity_edge_list.a IS NULL
ORDER BY entity.id ASC
""")
for row in cursor:
yield row[0]
def write_comparisons(self, comparisons: Generator[Comparison, None, None]):
cursor = self.connection.cursor()
query = f"""
INSERT INTO entity_edge_list (a, b, score, count, f_score_sum, change_date) VALUE (%s, %s, %s, %s, %s, NOW())
ON DUPLICATE KEY UPDATE score=VALUES(score), count=VALUES(count), f_score_sum=VALUES(f_score_sum), change_date=NOW();
"""
# execute in batches of 1000
for chunk in chunks(comparisons, size=1000):
cursor.executemany(query, [
(c.entity[self.ID_COLUMN], c.other_entity[self.ID_COLUMN], c.score, c.count, c.f_score_sum)
for c in chunk
])
self.connection.commit()
if __name__ == "__main__":
Entity().execute(limit=None)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file duplicate_recognition-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: duplicate_recognition-0.0.9-py3-none-any.whl
- Upload date:
- Size: 10.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26575e835618768517315a11e9c71d2dac3c566679fb74033cba6a090efd23e1 |
|
MD5 | c97f9fac3137ecc0e441b2bc72ce0131 |
|
BLAKE2b-256 | 929642328702a6946afefe418d259b77a23f23c7dfe6c484cd0744b949f6054a |