Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build Status PyPI version PyPI wheel Supported Python versions

EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

June 17, 2022: Release v0.13.1, see release notes here

Previous releases

January 31, 2022: Release v0.13.0, see release notes here

August 13, 2021: Release v0.12.0, see release notes here

August 5, 2021: Release v0.12.0b6, see release notes here

August 3, 2021: Release v0.12.0b5, see release notes here

July 9, 2021: Release v0.12.0b4, see release notes here

June 25, 2021: Release v0.12.0b3, see release notes here

June 18, 2021: Release v0.12.0b2, see release notes here

June 7, 2021: Release v0.12.0b1, see release notes here

May 18, 2021: Release v0.11.1, see release notes here

May 8, 2021: Release v0.11.0, see release notes here

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Dynamic Double Machine Learning (click to expand)
from econml.dynamic.dml import DynamicDML
# Use defaults
est = DynamicDML()
# Or specify hyperparameters
est = DynamicDML(model_y=LassoCV(cv=3), 
                 model_t=LassoCV(cv=3), 
                 cv=3)
est.fit(Y, T, X=X, W=None, groups=groups, inference="auto")
# Effects
treatment_effects = est.effect(X_test)
# Confidence intervals
lb, ub = est.effect_interval(X_test, alpha=0.05)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Double Machine Learning with Instrumental Variables (click to expand)
  • Orthogonal instrumental variable learner
from econml.iv.dml import OrthoIV

est = OrthoIV(projection=False, 
              discrete_treatment=True, 
              discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Nonparametric double machine learning with instrumental variable
from econml.iv.dml import NonParamDMLIV

est = NonParamDMLIV(projection=False, 
                    discrete_treatment=True, 
                    discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W) # no analytical confidence interval available
treatment_effects = est.effect(X_test)
Doubly Robust Machine Learning with Instrumental Variables (click to expand)
  • Linear final stage
from econml.iv.dr import LinearDRIV

est = LinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Sparse linear final stage
from econml.iv.dr import SparseLinearDRIV

est = SparseLinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Debiased lasso confidence intervals
  • Nonparametric final stage
from econml.iv.dr import ForestDRIV

est = ForestDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05) 
  • Linear intent-to-treat (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearIntentToTreatDRIV(model_y_xw=GradientBoostingRegressor(),
                              model_t_xwz=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import Rscorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             linear_first_stages=False, cv=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), cv=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, cv=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             linear_first_stages=False, cv=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand)
from econml.policy import DRPolicyTree, DRPolicyForest
from sklearn.ensemble import RandomForestRegressor

# fit a single binary decision tree policy
policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the binary decision tree
plt.figure(figsize=(10,5))
policy.plot()
# get feature importances
importances = policy.feature_importances_

# fit a binary decision forest
policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the first tree in the ensemble
plt.figure(figsize=(10,5))
policy.plot(0)
# get feature importances
importances = policy.feature_importances_

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run pip install -e . to get started (but depending on what you're doing you might want to install with extras instead, like pip install -e .[plt] if you want to use matplotlib integration, or you can use pip install -e .[all] to include all extras).

Running the tests

This project uses pytest for testing. To run tests locally after installing the package, you can use pip install pytest-runner followed by python setup.py pytest.

We have added pytest marks to some tests to make it easier to run a subset, and you can set the PYTEST_ADDOPTS environment variable to take advantage of this. For instance, you can set it to -m "not (notebook or automl)" to skip notebook and automl tests that have some additional dependencies.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/microsoft/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1 (2021): 133-161.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2020

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.13.1.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

econml-0.13.1-cp39-cp39-win_amd64.whl (929.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

econml-0.13.1-cp39-cp39-win32.whl (862.3 kB view details)

Uploaded CPython 3.9 Windows x86

econml-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

econml-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

econml-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

econml-0.13.1-cp38-cp38-win_amd64.whl (928.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.13.1-cp38-cp38-win32.whl (861.7 kB view details)

Uploaded CPython 3.8 Windows x86

econml-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

econml-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

econml-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

econml-0.13.1-cp37-cp37m-win_amd64.whl (920.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

econml-0.13.1-cp37-cp37m-win32.whl (853.2 kB view details)

Uploaded CPython 3.7m Windows x86

econml-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

econml-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

econml-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

econml-0.13.1-cp36-cp36m-win_amd64.whl (992.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

econml-0.13.1-cp36-cp36m-win32.whl (893.0 kB view details)

Uploaded CPython 3.6m Windows x86

econml-0.13.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

econml-0.13.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

econml-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file econml-0.13.1.tar.gz.

File metadata

  • Download URL: econml-0.13.1.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1.tar.gz
Algorithm Hash digest
SHA256 9060e54f46657a62c67e26a6755feb0531106b24e7444fa4c86b8139c89cf9b9
MD5 63975980ea0e8064308f5ac7b48239b2
BLAKE2b-256 0cf058dd82c531ef8620bdebcb96a4caef6ddca30d8d75ebb0808db470a3f5f8

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: econml-0.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 929.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 38a09d3bfde8c450212b18a4636af2a64685d1a0f8d76c8cfe0830437a289eb6
MD5 37ae2bcfacd033e5f1b5791e910defba
BLAKE2b-256 d3a436ba1af32c0d2e20b6390f39d7451cb44563e4dac2701a56725cd3029f3f

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: econml-0.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 862.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cb0cb22ecbfbdd75edfab1a8539173b69a322a270c8c53e574fd50ec68784b0f
MD5 4a46ccd1c2ee34cb4d7efa933f348e6c
BLAKE2b-256 ad3ceb2fec4f627439c8d63140840c28db6e271f1c74f439bdc4b85ba1ff955f

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3aa8d8cc8dadbce7dc6fba4d8d17cc46cd6cdd2da8ade7c9f0ebfab491ee9dd
MD5 b3240b9a6937d7b567fc12c5703805da
BLAKE2b-256 51ab3adf0294604a18c8c7abd5d3f6cb5e11aa69ae1af68ca6c5e1d44a58eff8

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for econml-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b01ba564050e5973ba309f0127289a1cf06274d2f294df80245efb95c55d620e
MD5 e823fcdeb669a569eec4f14b675e64df
BLAKE2b-256 e8abb09a746d5823ee121fa1f3052525fe51b80ca469e7522a4c5e51eebb6eda

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac367fa415d94496b643d003fffc5aa079eebbea566020d88f85fcae23b0234f
MD5 c36d5d75069ef6118fbbb9c7b6db7a97
BLAKE2b-256 2f66cb3dafcddd1db30368e814acaf211620b7ea662e7047e5a99af397e1ba3e

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 928.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03d7a1db756c3ec9a3913f18575401660d433bf415af8107c1a160d859e216bd
MD5 d211f1f5c68b434a857983b703756615
BLAKE2b-256 568d5bb838da660c6ff4c5ebd6a12410d4e728b71e3df49adfd1c15ce053453d

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: econml-0.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 861.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 83b3d59a03be978d35f9f82d92de2d62773877298f414e72ab435e4dbb5d939a
MD5 810eba19390480f8af26f82321384754
BLAKE2b-256 615adb47579cee36796ee853173375244daee0f5761d03fce69add147bd9fb5e

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4abaecd178bbfd3db1ed0820c14b1c4cb5053bdc3382c23a2d194d059f29412
MD5 315642bffbb04e6b46c4081a931d2f43
BLAKE2b-256 4fe0072d38565f24a49d888a6dbdd08e6a0e7a3793e5a91679bffb048633dd95

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for econml-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0cd016c2d8cd2e77440efbc27f49d3a42aa3e1795bdf7db80909a5b4c65497a7
MD5 f7cd1dbddd3b84f91bf032dbd5886f0f
BLAKE2b-256 39759d08d3ad3d28914491ef57a1339508fd33df4024e6d166552cff06557e6e

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16d29c53eb6591b3eabb4603d7e72ab25f4bd4274b0fb78916327742bae81081
MD5 4bac5952f7391ede0faee67a23a546d7
BLAKE2b-256 6f56fc1854d55b34c7fb86134be7836222f7195c85889780143ef5a2b613b7a2

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: econml-0.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 920.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e154b07c3b34aa2ffee35caa6ab79f5a57f762ee4ce2d496b294391c4304c245
MD5 defe789aadfcc9d91fb69fbe3c37eccc
BLAKE2b-256 7f6002d02d52d05ed4d885d2f5a236257f4691c6e5ae961992b50d41f4566fd0

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: econml-0.13.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 853.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3d632e65e70f14364acadfc6882a8cf0ecc2227cf5a8e6e007aee5961bfff7a7
MD5 48ef59276675ecb5aedce03607fd6c3f
BLAKE2b-256 05edbd841ab40fca717da641416bf75d7bac505435368c558c4613c89c68f656

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2f173b95d1c92d69f2fbe69f23de436deae3cb6462e34ad84bb7746bdcd90e0
MD5 d50e090eb6f1d53a961ba41eae816fa7
BLAKE2b-256 66cbd90ddd2257d911b11487c313ff107844db723fdee9ad31e309eb683899ae

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for econml-0.13.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb1d9f313c909e5cf3da7861dbc62dccf2be80128a2fb81ce4966dc01bf41946
MD5 d7971647986c7706a4746f3ee25f196e
BLAKE2b-256 4963229a79e6c841492cd1c227f49ed6420126a2d807e74974d2d3e3dfc3c922

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcaf25cb1fd515a4ab26c1820240604a0d01f7fc3e40cbf325077c0351252292
MD5 81b9d3682f8eb010288226cdd3f35536
BLAKE2b-256 4f7c08b96879dc477daca03464a6ae52c98aeafa746b03aefe5751bb11bf625f

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: econml-0.13.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 992.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 022682d1d10e0fc4b33eed52c5149397cf49a2325c03482dae1eff4494767870
MD5 c97f203d2493671de909c3f4b03ad16d
BLAKE2b-256 17e947d6b05a07cafefdc140bfcc1d7182cdde0d5ad84ccb9e84f01ae6dd4827

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: econml-0.13.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 893.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 075ad0e5e5db7ffc504263f0c8853fff6cd95973f9cfb01ef674aaca8cdcba68
MD5 cc3022406b5424a7e044f7ab8be562c2
BLAKE2b-256 123582f2ac187fcbee934e2ce9339e6f813f60473edd0cacfb30c837e2202e01

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8567287c7349ba671d94d8a37c271095a9109c90a1c6e94fa03fbcda0c0d3554
MD5 f75fd0fcc62023281ee7f99499ceb003
BLAKE2b-256 a1e64237bafe8b0bf9d59a8c5a9bc4b70cfa1a958129700249d570f6c591237f

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for econml-0.13.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37816ffa16154678dce09a9a1d40b24ac85d689d496fbe122a9274645516821f
MD5 b905b09fec3669ab6bba242c392e392b
BLAKE2b-256 9a8a110fdedd520ad8f94a4f863ece8a09fafff1db14098eed28ac5134d0c0c0

See more details on using hashes here.

File details

Details for the file econml-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: econml-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/24.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.54.1 importlib-metadata/4.8.3 keyring/20.0.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.6

File hashes

Hashes for econml-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53f85030480858a5d325e5b7ab638775faad281a16fba639b337aeaa49629a95
MD5 4e39e6be1119c4076e72990538ebe6b3
BLAKE2b-256 e7147aa401b107f8f753f67dbdd8ac0f4b7801345a8df4576bf5b271ad546797

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page