Skip to main content

Base classes for visit reports/tracking in clinicedc/edc

Project description

pypi actions codecov downloads

edc-visit-schedule

Add data collection schedules to your app.

Installation

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_visit_schedule.apps.AppConfig',
    ...
]

Overview

  • A Visit Schedule lives in your app in visit_schedules.py. Each app can declare and register one or more visit schedules in its visit_schedules module. Visit schedules are loaded when autodiscover is called from AppConfig.

  • A VisitSchedule contains Schedules which contain Visits which contain Crfs and Requisitions.

  • A schedule is effectively a “data collection schedule” where each contained visit represents a data collection timepoint.

  • A subject is put on a schedule by the schedule’s onschedule model and taken off by the schedule’s offschedule model. In the example below we use models OnSchedule and OffSchedule to do this for schedule schedule1.

Usage

First, create a file visit_schedules.py in the root of your app where the visit schedule code below will live.

Next, declare lists of data Crfs and laboratory Requisitions to be completed during each visit. For simplicity, we assume that every visit has the same data collection requirement (not usually the case).

from myapp.models import SubjectVisit, OnSchedule, OffSchedule, SubjectDeathReport, SubjectOffstudy

from edc_visit_schedule.site_visit_schedules import site_visit_schedules
from edc_visit_schedule.schedule import Schedule
from edc_visit_schedule.visit import Crf, Requisition, FormsCollection
from edc_visit_schedule.visit_schedule import VisitSchedule


crfs = FormsCollection(
    Crf(show_order=10, model='myapp.crfone'),
    Crf(show_order=20, model='myapp.crftwo'),
    Crf(show_order=30, model='myapp.crfthree'),
    Crf(show_order=40, model='myapp.crffour'),
    Crf(show_order=50, model='myapp.crffive'),
)

requisitions = FormsCollection(
    Requisition(
        show_order=10, model='myapp.subjectrequisition', panel_name='Research Blood Draw'),
    Requisition(
        show_order=20, model='myapp.subjectrequisition', panel_name='Viral Load'),
)

Create a new visit schedule:

subject_visit_schedule = VisitSchedule(
    name='subject_visit_schedule',
    verbose_name='My Visit Schedule',
    death_report_model=SubjectDeathReport,
    offstudy_model=SubjectOffstudy,
    visit_model=SubjectVisit)

Visit schedules contain Schedules so create a schedule:

schedule = Schedule(
    name='schedule1',
    onschedule_model='myapp.onschedule',
    offschedule_model='myapp.offschedule')

Schedules contains visits, so decalre some visits and add to the schedule:

visit0 = Visit(
    code='1000',
    title='Visit 1000',
    timepoint=0,
    rbase=relativedelta(days=0),
    requisitions=requisitions,
    crfs=crfs)

visit1 = Visit(
    code='2000',
    title='Visit 2000',
    timepoint=1,
    rbase=relativedelta(days=28),
    requisitions=requisitions,
    crfs=crfs)

schedule.add_visit(visit=visit0)
schedule.add_visit(visit=visit1)

Add the schedule to your visit schedule:

schedule = subject_visit_schedule.add_schedule(schedule)

Register the visit schedule with the site registry:

site_visit_schedules.register(subject_visit_schedule)

When Django loads, the visit schedule class will be available in the global site_visit_schedules.

The site_visit_schedules has a number of methods to help query the visit schedule and some related data.

Note: The schedule above was declared with onschedule_model=OnSchedule. An on-schedule model uses the CreateAppointmentsMixin from edc_appointment. On onschedule.save() the method onschedule.create_appointments is called. This method uses the visit schedule information to create the appointments as per the visit data in the schedule. See also edc_appointment.

OnSchedule and OffSchedule models

Two models_mixins are available for the the on-schedule and off-schedule models, OnScheduleModelMixin and OffScheduleModelMixin. OnSchedule/OffSchedule models are specific to a schedule. The visit_schedule_name and schedule_name are declared on the model’s Meta class attribute visit_schedule_name.

For example:

class OnSchedule(OnScheduleModelMixin, CreateAppointmentsMixin, RequiresConsentModelMixin, BaseUuidModel):

    class Meta(EnrollmentModelMixin.Meta):
        visit_schedule_name = 'subject_visit_schedule.schedule1'
        consent_model = 'myapp.subjectconsent'


class OffSchedule(OffScheduleModelMixin, RequiresConsentModelMixin, BaseUuidModel):

    class Meta(OffScheduleModelMixin.Meta):
        visit_schedule_name = 'subject_visit_schedule.schedule1'
        consent_model = 'myapp.subjectconsent'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc-visit-schedule-0.3.26.tar.gz (59.8 kB view details)

Uploaded Source

Built Distribution

edc_visit_schedule-0.3.26-py3-none-any.whl (83.4 kB view details)

Uploaded Python 3

File details

Details for the file edc-visit-schedule-0.3.26.tar.gz.

File metadata

  • Download URL: edc-visit-schedule-0.3.26.tar.gz
  • Upload date:
  • Size: 59.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.9

File hashes

Hashes for edc-visit-schedule-0.3.26.tar.gz
Algorithm Hash digest
SHA256 13f5f85f3941a9f28ef260c92ce1b59a0c67ca6ffb92ab1b11a8b60a9508c71c
MD5 bbaf171ac2fecccb1c8fcd9143c69467
BLAKE2b-256 bf3e1d8bb2806a1e59c0a0b6f96e28afc2f1ccd91041a5714edf4e41a8674916

See more details on using hashes here.

File details

Details for the file edc_visit_schedule-0.3.26-py3-none-any.whl.

File metadata

File hashes

Hashes for edc_visit_schedule-0.3.26-py3-none-any.whl
Algorithm Hash digest
SHA256 08e94acc55425bab336413a110f129c192cac241e8974219b7e9ff49396b373f
MD5 4a7212866d3939a1042724203f9965f4
BLAKE2b-256 063cdf580125f1f24011ca0cc88be705026d6543ca324c1470e6da07213b0591

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page