Skip to main content

Fast Levenshtein and Damerau optimal string alignment algorithms.

Project description

editdistpy
PyPI version Tests

editdistpy is a fast implementation of the Levenshtein edit distance and the Damerau-Levenshtein optimal string alignment (OSA) edit distance algorithms. The original C# project can be found at SoftWx.Match.

Installation

The easiest way to install editdistpy is using pip:

pip install -U editdistpy

Usage

You can specify the max_distance you care about, if the edit distance exceeds this max_distance, -1 will be returned. Specifying a sensible max distance can result in significant speed improvement.

You can also specify max_distance=sys.maxsize if you wish for the actual edit distance to always be computed.

Levenshtein

import sys

from editdistpy import levenshtein

string_1 = "flintstone"
string_2 = "hanson"

max_distance = 2
print(levenshtein.distance(string_1, string_2, max_distance))
# expected output: -1

max_distance = sys.maxsize
print(levenshtein.distance(string_1, string_2, max_distance))
# expected output: 6

Damerau-Levenshtein OSA

import sys

from editdistpy import damerau_osa

string_1 = "flintstone"
string_2 = "hanson"

max_distance = 2
print(damerau_osa.distance(string_1, string_2, max_distance))
# expected output: -1

max_distance = sys.maxsize
print(damerau_osa.distance(string_1, string_2, max_distance))
# expected output: 6

Benchmark

A simple benchmark was done on Python 3.8.12 against editdistance which implements the Levenshtein edit distance algorithm.

The script used by the benchmark can be found here.

For clarity, the following string pairs were used.

Single word (completely different)

"xabxcdxxefxgx"
"1ab2cd34ef5g6"

Single word (similar)

"example"
"samples"

Single word (identical ending)

"kdeisfnexabxcdxlskdixefxgx"
"xabxcdxlskdixefxgx"

Short string

"short sentence with words"
"shrtsen tence wit mispeledwords"

Long string

"Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod rem"
"Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium"

single_dif string
        test_damerau_osa               0.5202 usec/pass 1040.36 msec total 2000000 iterations
        test_levenshtein               0.3547 usec/pass 709.40 msec total 2000000 iterations
        test_editdistance              0.6399 usec/pass 1279.81 msec total 2000000 iterations
        test_damerau_osa early_cutoff  0.5134 usec/pass 1026.72 msec total 2000000 iterations
        test_levenshtein early_cutoff  0.3862 usec/pass 772.31 msec total 2000000 iterations
single_sim string
        test_damerau_osa               0.2983 usec/pass 596.57 msec total 2000000 iterations
        test_levenshtein               0.2433 usec/pass 486.68 msec total 2000000 iterations
        test_editdistance              0.3942 usec/pass 788.36 msec total 2000000 iterations
        test_damerau_osa early_cutoff  0.2865 usec/pass 572.90 msec total 2000000 iterations
        test_levenshtein early_cutoff  0.2363 usec/pass 472.61 msec total 2000000 iterations
single_end string
        test_damerau_osa               0.3332 usec/pass 666.32 msec total 2000000 iterations
        test_levenshtein               0.3300 usec/pass 659.93 msec total 2000000 iterations
        test_editdistance              0.7902 usec/pass 1580.42 msec total 2000000 iterations
        test_damerau_osa early_cutoff  0.3199 usec/pass 639.74 msec total 2000000 iterations
        test_levenshtein early_cutoff  0.3205 usec/pass 641.01 msec total 2000000 iterations
short string
        test_damerau_osa               0.9925 usec/pass 1984.97 msec total 2000000 iterations
        test_levenshtein               0.6379 usec/pass 1275.76 msec total 2000000 iterations
        test_editdistance              0.9587 usec/pass 1917.37 msec total 2000000 iterations
        test_damerau_osa early_cutoff  0.7535 usec/pass 1506.91 msec total 2000000 iterations
        test_levenshtein early_cutoff  0.5794 usec/pass 1158.79 msec total 2000000 iterations
long string
        test_damerau_osa               8.6244 usec/pass 17248.73 msec total 2000000 iterations
        test_levenshtein               4.2367 usec/pass 8473.36 msec total 2000000 iterations
        test_editdistance              2.0407 usec/pass 4081.31 msec total 2000000 iterations
        test_damerau_osa early_cutoff  1.0795 usec/pass 2158.99 msec total 2000000 iterations
        test_levenshtein early_cutoff  0.9031 usec/pass 1806.28 msec total 2000000 iterations

While max_distance=10 significantly improves the computation time, it may not be a sensible value in some cases.

editdistpy is also seen to perform better with shorter length strings and can be the more suitable library if your use case mainly deals with comparing short strings.

Changelog

See the changelog for a history of notable changes to edistdistpy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

editdistpy-0.1.5.tar.gz (99.6 kB view details)

Uploaded Source

Built Distributions

editdistpy-0.1.5-cp312-cp312-win_amd64.whl (143.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

editdistpy-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

editdistpy-0.1.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

editdistpy-0.1.5-cp312-cp312-macosx_11_0_arm64.whl (141.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

editdistpy-0.1.5-cp312-cp312-macosx_10_9_x86_64.whl (142.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

editdistpy-0.1.5-cp311-cp311-win_amd64.whl (142.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

editdistpy-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

editdistpy-0.1.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

editdistpy-0.1.5-cp311-cp311-macosx_11_0_arm64.whl (141.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

editdistpy-0.1.5-cp311-cp311-macosx_10_9_x86_64.whl (141.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

editdistpy-0.1.5-cp310-cp310-win_amd64.whl (142.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

editdistpy-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

editdistpy-0.1.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

editdistpy-0.1.5-cp310-cp310-macosx_11_0_arm64.whl (141.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

editdistpy-0.1.5-cp310-cp310-macosx_10_9_x86_64.whl (141.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

editdistpy-0.1.5-cp39-cp39-win_amd64.whl (142.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

editdistpy-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

editdistpy-0.1.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

editdistpy-0.1.5-cp39-cp39-macosx_11_0_arm64.whl (141.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

editdistpy-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl (141.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

editdistpy-0.1.5-cp38-cp38-win_amd64.whl (142.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

editdistpy-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

editdistpy-0.1.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

editdistpy-0.1.5-cp38-cp38-macosx_11_0_arm64.whl (141.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

editdistpy-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl (141.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file editdistpy-0.1.5.tar.gz.

File metadata

  • Download URL: editdistpy-0.1.5.tar.gz
  • Upload date:
  • Size: 99.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for editdistpy-0.1.5.tar.gz
Algorithm Hash digest
SHA256 f594d5e96c5d6674aed1d5119911f0d3210f46f3c68d28de640adce2fe3d39f9
MD5 aead0d971d032780b2d99d59cc06de63
BLAKE2b-256 324d0aa43de7794b9b54f58e966f3dabf7dc67f67893b06291d5494abbeb8008

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ea1088d8c21b324d6e2472b926b49ff02895386f85b5992ee0213d728e3ed17b
MD5 7ad1ec08f5e1982f7d46dc28a1604a0a
BLAKE2b-256 bd3ef8d36dfd88755fe21043843a7db801c9a22b31117b5f1ca3c041da6035e1

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6bb84de9afdabf12f0de53d539050d7e1dae0f04c274d76d3b774e9cb9d48d18
MD5 11f163ec445f4352f2b7eadecce98e6e
BLAKE2b-256 f04bbf3cb4957428cdc4ee8ace62e8264eebeb0c4c5cc6fd72fc3a40c8d234fc

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea4473ab54e17954ed80fe3b9ffd763340e83033d6d9770e6f1962e4475af696
MD5 8c6421494a0a75e46986bfe6ebaa31f7
BLAKE2b-256 bd400f5c79fd2c33029a0fdb8869226635888ebc38a464ee13ba32bde82bbcfe

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4bbcfd92ba9e3d0a40025d4e37dfb90ac3d5e92e3b75617020c1c04898551f2
MD5 bc9752d8f3ea094090937567866f310f
BLAKE2b-256 ad0d5267b5ce844eb4fd143b6e653c262a04ca8adfd9dbdbaf4e3976cc6b5b77

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69f8f062beb1f74b390d3e3968c3de1810dff35209c8c279b3e134c981e53dd5
MD5 5a5840d34c6381075aec3d3daa5a991b
BLAKE2b-256 e27b8c54f83098cefb9b97d60ed1b90a48baefa7bce4b853719da42375a041de

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 38c52449f4f6e99fa55fd6e2b643f48827c60aec601475ec8f8eb7e557707f34
MD5 80d7003e0d87c54bb52952d30a9f0886
BLAKE2b-256 5a356e8dadad9608acac7861d9388966cd6e58f2d9d33e2d8b391339081a453f

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 02c5f73b6d1c28847b6840dd28cee9b7686d587464305c3a73ec1e1357610e21
MD5 a9182619d19d7992f5c50b193847b46f
BLAKE2b-256 761c097939c37211d5f845781404c4e88dbe6948931edcb8cdc120d5bdcce090

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4f031f3e44b05c884afa20fa7fc27ebbabf85c2f966ccbaf9ebb3b706fabeaf
MD5 518756420b7c3ba8cf952d0677775dfc
BLAKE2b-256 8a34d3490506fd915f8211c6b8e342ee73ec781200aac461fc5dd8de792f7f6a

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b8d4b441be465e873557146dc6381aa46bb4868f9c85238583df24d85d149e0
MD5 4880ec6f57ea36b65332835a76546f54
BLAKE2b-256 50ba04f9b185d9ebf5a9b22f0fb99bbe397183a76046faa7ca53df38f3281473

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd2f319f477ca8f4863da6e6820c0c9a94b379e980bd4d9181af3ed01aefb7eb
MD5 1f488059d3c6499c25bb692f9d343747
BLAKE2b-256 83ea49a025436e613b681281c3ac06e7eda851b6ffd4c724b8a6d21f271fcefc

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c0758911d188f582ac2cd2e8bd0f96fe89957ed1f191353f051678cc801a6705
MD5 6c99bc11b932033e61c2ebfbc9d56d12
BLAKE2b-256 3e7dd85df6d3ae1daba1f08e5c81846b165d1605c83009d57c29bc9cc5886e74

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6005d80be4a04fdc33ba467e78e595b609c1bf0ca7e3094fc114cf31f457735
MD5 665d040474b668854dd00269108a6bc4
BLAKE2b-256 3e38f9be8ab8d1b75c966832692653eb45f81ee365faf614dc6ed4fa0cc4827f

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d59ff81c31a485652669959d77e8b142d2379b9a390131d1fa52d757a24f4a8
MD5 2a8ef0c3ce72bf30b74b8e6f1b76f788
BLAKE2b-256 91d4a420f306295f1b942be3b1cfa2810f53662ed2ed15923681b2d4f1c26f68

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac82cd00b9d9e4d1c184f4b9d547ee00636f335510554e537ab55eba23054d95
MD5 692cfaf05fdb2eae88fd5e2d356640cf
BLAKE2b-256 e4fab875526b51fce601afe489c1281882e08f7a54b1f52890040787eb50dee6

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aae02f5a88cd681acdffd84c2d1e2b116e70bd16061a31b9d048b82704bb74b5
MD5 215c79623676fa325f9a79e55a47eeab
BLAKE2b-256 07cefd48738a5b04f6a3f782473b529cf79f1c8e7c26e1095dfa0c037b27531b

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52be9b0cb1af02bd9b58b4d0bab4662cceb27149189a8ade954fcfea80ac23d1
MD5 10902ac3beafffa872fec4faae67a9aa
BLAKE2b-256 c6b3cb34948199f8df70da429b36e356848f76b12961ae35e458b5ba6cc925c0

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ddb71c05feac35afafc512fe78c824e9819b75afa428428f72493cec581b22bc
MD5 a9db2b211e2040168678a01c05f7829e
BLAKE2b-256 4d9a57ac983cf03d4881287712cba472b81b3ec6dc92453480e520624214e295

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7e4c0c94185a0795e8129ff60f7ecf0236ce72ec379396636d9c3efec30f35b
MD5 234c464cab4fa78a07091b315817aa96
BLAKE2b-256 6ed9714f46a32fe6df48616713c152ad335536a3ba3e15504f6724a7b90c960b

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bd9179f89870dfa99c4fa6a56e5b597d32e7bd2d50dca24361b59de4f66efd0
MD5 0d859210b3bad0b8c7ec383b4c628ac0
BLAKE2b-256 5e2e3ac26d479fae34c16e69da056544844ae9cc6a9dff7a9bfab48da680b463

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a41e186d8efc55597958cabdc965e8d52affbf842ec1be05f0fb094e4d0b5e20
MD5 abcbae53a267baa97656a5dd9edd3717
BLAKE2b-256 31e808330d25904896b3f9454ab163991ad0d0327e299d025cdc38cf11a52261

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9e0a465a1fe3a1f283b27266f58d59942f1eebc7df0cbb441159e3b01f2d003d
MD5 13f04e8198188f3538031d7a9232a83b
BLAKE2b-256 2f12a3c54086abf4b880b1a1a90cc97b1d561bd5c20fdc1bfddb971d06e85560

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6baeb8e5cbc753520c930b6c782eb11303adc56fabfd950a42c48b4694d86b56
MD5 bba53c845238a4d63951bafd801676c9
BLAKE2b-256 cb2996c13beb8f9ae8bbe3d429148c18649bebcfe579bb123ec974199da5ce64

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be0a79d60106c791a879c2beb95cbb4dac50354aba62ca5ba0ddad0ac3fac882
MD5 66141a3503497727dbdd7dca3f85b6b3
BLAKE2b-256 0527b9f1d7e4075afb92a130212ea7116094ff27cb681e946059bf1aa12be5db

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3bf2be49aca44d61f878e67abe4938d12ad7b3e618f252cd3892ab688767301
MD5 189547820c56ef1b73a0eda00b829751
BLAKE2b-256 b4ab2453c67507729d80d4c1a2211d4255dd9a655bb19afdcb1d78f85489f4ce

See more details on using hashes here.

File details

Details for the file editdistpy-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for editdistpy-0.1.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 497e8e32ee9471a152ed91e3caa78f8e31765057409f7c9d4163b86fe70c3668
MD5 28099f0b25552882df8617a3a3deaeae
BLAKE2b-256 2d5b098e9824f5a52e40876071da4e73cf34afb88896b310da65fc1f6d549284

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page