Skip to main content

To compute the functional connectivity from EEG in various bands

Project description

Update

  • [version = 1.2.0] Added functionality to compute imaginary part of coherency

Installation

pip install eeg-fConn

Usage

import numpy as np
from eeg_fConn import connectivity as con

# dummy data
data = np.random.rand(10,200)

# filtering data
filtered_data = con.filteration(data=data, f_min=8, f_max=12, fs=250)

# pli connectivity
M,V = con.pli_connectivity(sensors=10,data=filtered_data)

# plv connectivity
M,V = con.plv_connectivity(sensors=10,data=filtered_data)

# ccf connectivity
M,V = con.ccf_connectivity(sensors=10,data=filtered_data)

# coh connectivity
M,V = con.coh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)

# icoh connectivity
M,V = con.icoh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)

Here M and V are connectivity matrix and connectivity vector respectively.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eeg_fConn-1.2.0.tar.gz (1.6 kB view details)

Uploaded Source

Built Distribution

eeg_fConn-1.2.0-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file eeg_fConn-1.2.0.tar.gz.

File metadata

  • Download URL: eeg_fConn-1.2.0.tar.gz
  • Upload date:
  • Size: 1.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for eeg_fConn-1.2.0.tar.gz
Algorithm Hash digest
SHA256 4aecfc2ea9f116e07988bd02b2ba07ce878d83a5bec11403b7c23176284781bc
MD5 c98e8d28a1d78dfd8176f566fec6b2e9
BLAKE2b-256 0c7db4a7e1d02301eaeae2e3686385e03a4577e03bf4f421489237f4d765936b

See more details on using hashes here.

File details

Details for the file eeg_fConn-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: eeg_fConn-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for eeg_fConn-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aabf5cf9919b2aab753102711532ce968d4b423dd0b1658744b9e6ceed416f21
MD5 01321dc8fedc7091b458884d8492844d
BLAKE2b-256 9c33e6ec1a17e04bad10c4389fa60c07c97d26b27bdd7329bcb1b9c945f1a9e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page