EfficientDet for PyTorch
Project description
EfficientDet (PyTorch)
A PyTorch implementation of EfficientDet.
It is based on the
- official Tensorflow implementation by Mingxing Tan and the Google Brain team
- paper by Mingxing Tan, Ruoming Pang, Quoc V. Le EfficientDet: Scalable and Efficient Object Detection
There are other PyTorch implementations. Either their approach didn't fit my aim to correctly reproduce the Tensorflow models (but with a PyTorch feel and flexibility) or they cannot come close to replicating MS COCO training from scratch.
Aside from the default model configs, there is a lot of flexibility to facilitate experiments and rapid improvements here -- some options based on the official Tensorflow impl, some of my own:
- BiFPN connections and combination mode are fully configurable and not baked into the model code
- BiFPN and head modules can be switched between depthwise separable or standard convolutions
- Activations, batch norm layers are switchable via arguments (soon config)
- Any backbone in my
timm
model collection that supports feature extraction (features_only
arg) can be used as a bacbkone.- Currently this is includes to all models implemented by the EficientNet and MobileNetv3 classes (which also includes MNasNet, MobileNetV2, MixNet and more). More soon...
Updates / Tasks
2020-09-03
- All models updated to latest checkpoints from TF original.
- Add experimental soft-nms code, must be manually enabled right now. It is REALLY slow, .1-.2 mAP increase.
2020-07-27
- Add updated TF ported weights for D3 model (better training) and model def and weights for new D7X model (54.3 val mAP)
- Fix Windows bug so it at least trains in non-distributed mode
2020-06-15
Add updated D7 weights from Tensorflow impl, 53.1 validation mAP here (53.4 in TF)
2020-06-14
New model results, I've trained a D1 model with some WIP augmentation enhancements (not commited), just squeaking by official weights.
EfficientDet-D1:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393798
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.586831
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.420305
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191880
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455586
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.571316
Also, Soyeb Nagori trained an EfficientDet-Lite0 config using this code and contributed the weights.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.319861
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.500062
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336777
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.111257
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.378062
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501938
Unlike the other tf_ prefixed models this is not ported from (as of yet unreleased) TF official model, but it used
TF ported weights from timm
for the pretrained imagenet model as the backbone init, thus it uses SAME padding.
2020-06-12
- Additional experimental model configs based on MobileNetV2, MobileNetV3, MixNet, EfficientNet-Lite. Requires
update to
timm==0.1.28
for string based activation factory. - Redundant bias config handled more consistency, defaults to config unless overridden by arg
2020-06-04
Latest results in and training goal achieved. Slightly bested the TF model mAP results for D0 model. This model uses:
- typical PyTorch symmetric padding (instead of TF compatible SAME)
- my PyTorch trained EfficientNet-B0 as the pretrained starting weights (from
timm
) - BiFPN/Head layers without any redundant conv/BN bias layers (slightly fewer params 3877763 vs 3880067)
My latest D0 run:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336251
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.521584
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.356439
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
TF ported D0 weights:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335653
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516253
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.353884
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125278
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.386957
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528071
Pretrained weights added for this model efficientdet_d0
(Tensorflow port is tf_efficientdet_d0
)
2020-05-27
- A D0 result in, started before last improvements:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
- Another D0 and D1 running with the latest code.
2020-05-22 / 23
A bunch of changes:
- COCO eval per epoch for better selection of checkpoints while training, works with distributed
- optimizations to both train and inference that should see small throughput gains
- doing the above, attempted to torchscript the full training loss + anchor labeler but ran into problems so had to back out part way due messy hacks or weird AMP issues causing silent bad results. Hopefully in PyTorch 1.6 there will be less TS issues.
- updated results after clipping boxes, now pretty much exact match to official, even slightly better on a few models
- added model factory, pretrained download, cleanup model configs
- setup.py, pypi release
2020-05-04
Initial D1 training results in -- close but not quite there. Definitely in reach and better than any other non-official EfficientDet impl I've seen.
Biggest missing element is proper per-epoch mAP validation for better checkpoint selection (than loss based). I was resisting doing full COCO eval because it's so slow, but may throw that in for now...
D1: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.382
Previous D0 result: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.324
2020-05-02
First decent MSCOCO training results (from scratch, w/ pretrained classification backbone weights as starting point). 32.4 mAP for D0. Working on improvements and D1 trials still running.
2020-04-15
Taking a pause on training, some high priority things came up. There are signs of life on the training branch, was working the basic augs before priority switch, loss fn appeared to be doing something sane with distributed training working, no proper eval yet, init not correct yet. I will get to it, with SOTA training config and good performance as the end goal (as with my EfficientNet work).
2020-04-11
Cleanup post-processing. Less code and a five-fold throughput increase on the smaller models. D0 running > 130 img/s on a single 2080Ti, D1 > 130 img/s on dual 2080Ti up to D7 @ 8.5 img/s.
2020-04-10
Replace generate_detections
with PyTorch impl using torchvision batched_nms. Significant performance increase with minor (+/-.001 mAP) score differences. Quite a bit faster than original TF impl on a GPU now.
2020-04-09
Initial code with working validation posted. Yes, it's a little slow, but I think faster than the official impl on a GPU if you leave AMP enabled. Post processing needs some love.
Core Tasks
- Feature extraction from my EfficientNet implementations (https://github.com/rwightman/gen-efficientnet-pytorch or https://github.com/rwightman/pytorch-image-models)
- Low level blocks / helpers (SeparableConv, create_pool2d (same padding), etc)
- PyTorch implementation of BiFPN, BoxNet, ClassNet modules and related submodules
- Port Tensorflow checkpoints to PyTorch -- initial D1 checkpoint converted, state_dict loaded, on to validation....
- Basic MS COCO validation script
- Temporary (hacky) COCO dataset and transform
- Port reference TF anchor and object detection code
- Verify model output sanity
- Integrate MSCOCO eval metric calcs
- Some cleanup, testing
- Submit to test-dev server, all good
- pretrained URL based weight download
- Torch hub
- Remove redundant bias layers that exist in the official impl and weights
- Add visualization support
- Performance improvements, numpy TF detection code -> optimized PyTorch
- Verify/fix Torchscript and ONNX export compatibility
- Try PyTorch 1.6/1.7 w/ NHWC (channels last) order which matches TF impl
Possible Future Tasks
- Basic Training (object detection) reimplementation
- Advanced Training w/ Rand/AutoAugment, etc
- Training (semantic segmentation) experiments
- Integration with Detectron2 / MMDetection codebases
- Addition and cleanup of EfficientNet based U-Net and DeepLab segmentation models that I've used in past projects
- Addition and cleanup of OpenImages dataset/training support from a past project
- Exploration of instance segmentation possibilities...
If you are an organization is interested in sponsoring and any of this work, or prioritization of the possible future directions interests you, feel free to contact me (issue, LinkedIn, Twitter, hello at rwightman dot com). I will setup a github sponser if there is any interest.
Models
Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
---|---|---|---|---|---|
lite0 | tf_efficientdet_lite0.pth | 32.0 | TBD | N/A | N/A |
D0 | efficientdet_d0.pth | 33.6 | TBD | 33.5 | 33.8 |
D0 | tf_efficientdet_d0.pth | 34.2 | TBD | 34.3 | 34.6 |
D1 | efficientdet_d1.pth | 39.4 | 39.5 | 39.1 | 39.6 |
D1 | tf_efficientdet_d1.pth | 40.1 | TBD | 40.2 | 40.5 |
D2 | tf_efficientdet_d2.pth | 43.4 | TBD | 42.5 | 43 |
D3 | tf_efficientdet_d3.pth | 47.1 | TBD | 47.2 | 47.5 |
D4 | tf_efficientdet_d4.pth | 49.2 | TBD | 49.3 | 49.7 |
D5 | tf_efficientdet_d5.pth | 51.2 | TBD | 51.2 | 51.5 |
D6 | tf_efficientdet_d6.pth | 52.0 | TBD | 52.1 | 52.6 |
D7 | tf_efficientdet_d7.pth | 53.1 | 53.4 | 53.4 | 53.7 |
D7X | tf_efficientdet_d7x.pth | 54.3 | TBD | 54.4 | 55.1 |
NOTE: Official scores for all modules now using soft-nms, but still using normal NMS here.
Usage
Environment Setup
Tested in a Python 3.7 or 3.8 conda environment in Linux with:
- PyTorch 1.4 or PyTorch 1.6 (I recommend avoiding PyTorch 1.5 due to some jit and argmax issues)
- PyTorch Image Models (timm) >= 0.1.28,
pip install timm
or local install from (https://github.com/rwightman/pytorch-image-models) - Apex AMP master (as of 2020-04)
NOTE - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail, the validation script will still save the output JSON and that can be run through eval again later.
Dataset Setup
MSCOCO 2017 validation data:
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip val2017.zip
unzip annotations_trainval2017.zip
MSCOCO 2017 test-dev data:
wget http://images.cocodataset.org/zips/test2017.zip
unzip -q test2017.zip
wget http://images.cocodataset.org/annotations/image_info_test2017.zip
unzip image_info_test2017.zip
Run COCO Evaluation
Run validation (val2017 by default) with D2 model: python validation.py /localtion/of/mscoco/ --model tf_efficientdet_d2 --checkpoint tf_efficientdet_d2.pth
Run test-dev2017: python validation.py /localtion/of/mscoco/ --model tf_efficientdet_d2 --checkpoint tf_efficientdet_d2.pth --anno test-dev2017
Run Inference
TODO: Need an inference script
Run Training
./distributed_train.sh 2 /mscoco --model tf_efficientdet_d0 -b 16 --amp --lr .04 --warmup-epochs 5 --sync-bn --opt fusedmomentum --fill-color mean --model-ema
NOTE:
- Training script currently defaults to a model that does NOT have redundant conv + BN bias layers like the official models, set correct flag when validating.
- I've only trained with img mean (
--fill-color mean
) as the background for crop/scale/aspect fill, the official repo uses black pixel (0) (--fill-color 0
). Both likely work fine. - The official training code uses EMA weight averaging by default, it's not clear there is a point in doing this with the cosine LR schedule, I find the non-EMA weights end up better than EMA in the last 10-20% of training epochs
- The default h-params is a very close to unstable (exploding loss), don't try using Nesterov momentum. Try to keep the batch size up, use sync-bn.
Examples of Training / Fine-Tuning on Alternate Datasets
- Alex Shonenkov has a clear and concise Kaggle kernel which illustrates fine-tuning these models for detecting wheat heads: https://www.kaggle.com/shonenkov/training-efficientdet
- If you have a good example script or kernel training these models with a different dataset, feel free to notify me for inclusion here...
Results
My Training
EfficientDet-D0
Latest training run with .336 for D0 (on 4x 1080ti):
./distributed_train.sh 4 /mscoco --model efficientdet_d0 -b 22 --amp --lr .12 --sync-bn --opt fusedmomentum --warmup-epochs 5 --lr-noise 0.4 0.9 --model-ema --model-ema-decay 0.9999
These hparams above resulted in a good model, a few points:
- the mAP peaked very early (epoch 200 of 300) and then appeared to overfit, so likely still room for improvement
- I enabled my experimental LR noise which tends to work well with EMA enabled
- the effective LR is a bit higher than official. Official is .08 for batch 64, this works out to .0872
- drop_path (aka survival_prob / drop_connect) rate of 0.1, which is higher than the suggested 0.0 for D0 in official, but lower than the 0.2 for the other models
- longer EMA period than default
VAL2017
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336251
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.521584
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.356439
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.287121
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.441450
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467914
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.197697
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.552515
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.689297
EfficientDet-D1
Latest run with .394 mAP (on 4x 1080ti):
./distributed_train.sh 4 /mscoco --model efficientdet_d1 -b 10 --amp --lr .06 --sync-bn --opt fusedmomentum --warmup-epochs 5 --lr-noise 0.4 0.9 --model-ema --model-ema-decay 0.99995
For this run I used some improved augmentations, still experimenting so not ready for release, should work well without them but will likely start overfitting a bit sooner and possibly end up a in the .385-.39 range.
Ported Tensorflow weights
TEST-DEV2017
NOTE: I've only tried submitting D7 to dev server for sanity check so far
TF-EfficientDet-D7
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.726
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.577
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.356
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.569
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.660
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.397
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.644
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.718
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.818
VAL2017
TF-EfficientDet-D0
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.341877
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.525112
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.360218
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.131366
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.399686
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537368
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.293137
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.447829
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.472954
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.195282
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558127
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.695312
TF-EfficientDet-D1
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.401070
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.590625
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.422998
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211116
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.459650
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577114
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.326565
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.507095
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.537278
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.308963
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.610450
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.731814
TF-EfficientDet-D2
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.434042
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.627834
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463488
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237414
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.486118
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.606151
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.343016
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.538328
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.571489
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.350301
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.638884
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746671
TF EfficientDet-D3
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.471223
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.661550
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.505127
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.301385
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518339
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.626571
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.365186
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.582691
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.617252
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.424689
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.670761
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.779611
TF-EfficientDet-D4
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491759
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.686005
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.527791
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.325658
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.536508
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635309
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.373752
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.601733
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.638343
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.463057
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.685103
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.789180
TF-EfficientDet-D5
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.511767
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.704835
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552920
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.355680
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551341
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.650184
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.384516
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.619196
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.657445
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499319
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.695617
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.788889
TF-EfficientDet-D6
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.520200
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.713204
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.560973
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361596
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567414
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657173
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.387733
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629269
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.667495
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499002
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.711909
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.802336
TF-EfficientDet-D7
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531256
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.724700
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.571787
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.368872
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.573938
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668253
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.393620
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.637601
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.676987
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524850
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.717553
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.806352
TF-EfficientDet-D7X
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.543
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.737
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.579
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.680
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.649
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.689
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.550
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.725
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.823
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.