Skip to main content

A toolbox for efficient global optimization

Project description

egobox

tests pytests linting DOI

Rust toolbox for Efficient Global Optimization algorithms inspired from SMT.

egobox is twofold:

  1. for end-users: a Python module, the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, written in Rust.
  2. for developers: a set of Rust libraries useful to implement bayesian optimization (EGO-like) algorithms,

The Python module

Thanks to the PyO3 project, which makes Rust well suited for building Python extensions.

Installation

pip install egobox

Egor optimizer

import numpy as np
import egobox as egx

# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
    return (x - 3.5) * np.sin((x - 3.5) / (np.pi))

# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}")  # Optimization f=[-15.12510323] at [18.93525454]

Gpx surrogate model

import numpy as np
import egobox as egx

# Training
xtrain = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]).T
ytrain = np.array([[0.0, 1.0, 1.5, 0.9, 1.0]]).T
gpx = egx.Gpx.builder().fit(xtrain, ytrain)

# Prediction
xtest = np.linspace(0, 4, 20).reshape((-1, 1))
ytest = gpx.predict(xtest)

See the tutorial notebooks and examples folder for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.

The Rust libraries

egobox Rust libraries consists of the following sub-packages.

Name Version Documentation Description
doe crates.io docs sampling methods; contains LHS, FullFactorial, Random methods
gp crates.io docs gaussian process regression; contains Kriging, PLS dimension reduction and sparse methods
moe crates.io docs mixture of experts using GP models
ego crates.io docs efficient global optimization with constraints and mixed integer handling

Usage

Depending on the sub-packages you want to use, you have to add following declarations to your Cargo.toml

[dependencies]
egobox-doe = { version = "0.20" }
egobox-gp  = { version = "0.20" }
egobox-moe = { version = "0.20" }
egobox-ego = { version = "0.20" }

Features

The table below presents the various features available depending on the subcrate

Name doe gp moe ego
serializable ✔️ ✔️ ✔️
persistent ✔️ ✔️(*)
blas ✔️ ✔️ ✔️
nlopt ✔️ ✔️

(*) required for mixed-variable gaussian process

serializable

When selected, the serialization with serde crate is enabled.

persistent

When selected, the save and load as a json file with serde_json crate is enabled.

blas

When selected, the usage of BLAS/LAPACK backend is possible, see below for more information.

nlopt

When selected, the nlopt crate is used to provide optimizer implementations (ie Cobyla, Slsqp)

Examples

Examples (in examples/ sub-packages folder) are run as follows:

cd doe && cargo run --example samplings --release
cd gp && cargo run --example kriging --release
cd moe && cargo run --example clustering --release
cd ego && cargo run --example ackley --release

BLAS/LAPACK backend (optional)

egobox relies on linfa project for methods like clustering and dimension reduction, but also try to adopt as far as possible the same coding structures.

As for linfa, the linear algebra routines used in gp, moe ad ego are provided by the pure-Rust linfa-linalg crate, the default linear algebra provider.

Otherwise, you can choose an external BLAS/LAPACK backend available through the ndarray-linalg crate. In this case, you have to specify the blas feature and a linfa BLAS/LAPACK backend feature (more information in linfa features).

Thus, for instance, to use gp with the Intel MKL BLAS/LAPACK backend, you could specify in your Cargo.toml the following features:

[dependencies]
egobox-gp = { version = "0.20", features = ["blas", "linfa/intel-mkl-static"] }

or you could run the gp example as follows:

cd gp && cargo run --example kriging --release --features blas,linfa/intel-mkl-static

Citation

DOI

If you find this project useful for your research, you may cite it as follows:

@article{
  Lafage2022, 
  author = {Rémi Lafage}, 
  title = {egobox, a Rust toolbox for efficient global optimization}, 
  journal = {Journal of Open Source Software} 
  year = {2022}, 
  doi = {10.21105/joss.04737}, 
  url = {https://doi.org/10.21105/joss.04737}, 
  publisher = {The Open Journal}, 
  volume = {7}, 
  number = {78}, 
  pages = {4737}, 
} 

Additionally, you may consider adding a star to the repository. This positive feedback improves the visibility of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

egobox-0.20.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.20.0-cp312-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

egobox-0.20.0-cp312-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.12 Windows x86

egobox-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

egobox-0.20.0-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

egobox-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

egobox-0.20.0-cp311-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

egobox-0.20.0-cp311-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86

egobox-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

egobox-0.20.0-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

egobox-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

egobox-0.20.0-cp310-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

egobox-0.20.0-cp310-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86

egobox-0.20.0-cp310-cp310-manylinux_2_35_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

egobox-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

egobox-0.20.0-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

egobox-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

egobox-0.20.0-cp39-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

egobox-0.20.0-cp39-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86

egobox-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

egobox-0.20.0-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

egobox-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

egobox-0.20.0-cp38-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

egobox-0.20.0-cp38-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86

egobox-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

egobox-0.20.0-cp37-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

egobox-0.20.0-cp37-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.7 Windows x86

egobox-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

egobox-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file egobox-0.20.0.tar.gz.

File metadata

  • Download URL: egobox-0.20.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0.tar.gz
Algorithm Hash digest
SHA256 e86a5b9f3a40b61411c9c1eb7754f311e649d2db7ca1f94b38dee28f8dee4720
MD5 5ce5ec5ddc5be2dc3bc607bf613dc499
BLAKE2b-256 c8f0ff58aecd0267702282264455de69fe16813d9ad461c29e9e80f6e5f2d8f3

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0156106cccd93d01664dda71d0d3ed4d004a2000672b885f76befbe62aa4edba
MD5 519c06d2b02451e932a88028c0dd22d4
BLAKE2b-256 62b980210c6550765c2c17de9f829a9998c8b3ceb72dc59ca753d4d6cdcba7ee

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca0bf149e1092c992ef4decef81b2e926e77c0786f930d1239884d76f6e0b351
MD5 1009dcf7a419a87c35e6f3a4718af203
BLAKE2b-256 d299beee7c1d9aaa364a04b203521c597d858f6b73f7d9f64846d25be7eb4548

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05f700d1cee870621a2b443716e327d0ee3d0ad3e5aa5d2ed6f9deaf87f7982c
MD5 ba69faf0d848b175ad220a50a91229dd
BLAKE2b-256 7959021dadd14fe84140f44430c7f292b0291fb46b8eb0937351e710527e2284

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 017e4c375062a0bacd9cb63abd4ea9d9d7bd5761b3decedbf9567e9471a28e6a
MD5 d3e025d15950f0172ba40af3c0fb4b55
BLAKE2b-256 8b1918564089e463915daec13bf12d268f0ff8034373fd38c51914deb94e4969

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29945f7a9fb4923c8607866ba422b3e83f761821735bcf47540d0865a15419af
MD5 d726204a831945c0b11e8e0f2630fb5b
BLAKE2b-256 ad536337bc84f595b0c1cc9873406c0f628c0848d1eec3e2f1302a76cb489529

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd0ed8017a1135c3623d678a22810d35283bb8e1a26d6258206deb6cf09779ed
MD5 d51f42d5e63e8136869498b67d2464ad
BLAKE2b-256 dded94a6350dcde9b31a47efdc9b31e8c866bb57ee5c65f85a7a1de8e7137833

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdf91ecfe9c5432ff6ca74dbf3f8122f03bb9b7353237ec9df7560528c89d259
MD5 58a1e6bf8d0d02776a2e6d3c98bc40bf
BLAKE2b-256 80438d6fe3d71c254ae728857e475a4ea04602526cc554de84fff60f17c4e5b2

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e24d5de3949f74b7159ad3d58677563c8bef0136b33ef43520efa1125353a847
MD5 aacacfd6d186f6d115523886fd5b013d
BLAKE2b-256 0008f71b27c7ccf7bb1465bfe0f6dbd66d7ea7939ca8e9df59a3f605e8ee95a3

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 5b53fb9e3e0de27b7ac4bc96644c936269c8cf7ff1d9571b944f44501534149a
MD5 c2eefc9ac0f782e2943cc41430c11f78
BLAKE2b-256 390e2b081d7d639b1c609caa67dfc2fb5e343d4052e41a489ed12314eab014c1

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp312-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 f4c62ae2e105b2ba336b3616cc6a66c7a1122fc0e7a2c18164be178db9232a1c
MD5 d3156b29e2915add9c63aea2665deb47
BLAKE2b-256 520923845c3fa79448f36cc0fdf236daf7bfe1139455e27719be31a4f7816985

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0938516f534f79ea42179a2947432d79b386de5f1c9dccd70a03c25267b2db58
MD5 6c94eab98768ba1a4ad4c4e05f93695d
BLAKE2b-256 0057b574517bc60d8a70aee23844ae3e27512ff64ad12d947f9f1ba7d1a9565d

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e7b86f95b9941e0200f4cfa981cdac023329140c05b9d2967104c822694d0a3
MD5 8d6d82496b6590d248bd8d0a0ca23530
BLAKE2b-256 13b99e8d6f0d0c2e812cddeaa4a6cc3a9b4a15a67a68b84c37350cef85bcbd6f

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 490ab0be0858876b7999e71ab13740a4e6737477a4b484bdba77449cdeff16a6
MD5 72a5fab04e395f355d69bce319de4cf2
BLAKE2b-256 96d9361283a0176e4494011bec4b178627e09ed85d9928b38517738906b5cd5a

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ac8916e6ff5374e31f68c41b1993cff20f6412e540afc1be242d38b404dec7a0
MD5 49ccb4048f4675487da1a7e0b070ac43
BLAKE2b-256 6f8331d976d7e7012d6bba49e1e29562515e84dbe3abe91b72576007fe452e3a

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 18f69c5873bc4701021f3b606d17153f760cd850d8eca4962d1e617ee669f910
MD5 b012eb97cec3ab996f53957df7d34ad1
BLAKE2b-256 5555aec5dcb12127c06596369d58487316634c39bc2648433f2ed4d4d1fa122d

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp311-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 a513ada6c4a2d2204e9725078d722b4c94e539fbd901c5bc872f6cda3c14edba
MD5 7cecc93c2ebe6ef39033042d8f9416d6
BLAKE2b-256 25a41c68cced7d1f716082a1030084a0dd3d4a6fe17375f9d06bf2cd546b76d2

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b62680af2126d90cc77c6411f0f07fc86e9350f9ab56c1aa25d4d01b522e85c4
MD5 ad22b933b18ed94c568b01a28a2527c8
BLAKE2b-256 96b55d3445d2bfbda2edb9adae28bdeddb0358d0fbae0c914b12260d545e0d96

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 64606a26d7ae8a987aa71f4821514f126973e2360887bd62040618c1bce8a575
MD5 29d77d1080820ab77ea1794c887bb2a7
BLAKE2b-256 19bbe349b4a1571abe4069b98872fa1238453719564926107b19dbcb1653cf31

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 190ba333c532722f0d0007cc8d89ab0d56ca23f4b0c8216a31d120aabe5a8101
MD5 e2b0bf72e12635a53666436908300432
BLAKE2b-256 538f2d5ad87b9aaddff1be1a7fee6d09725e8aebe0f8d0490690d54cbc38a909

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 936ea141bb6e711b9fdc8be7f4f21ff11144bcd017655ec819182c5d6a1d7fe4
MD5 468cffeb049371a2b1a09a50ecaed7b7
BLAKE2b-256 e4872adfa33b812afbb668aa336ab4020acecf09c3858d6b170d73c0334e81b6

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bebe1331d0cf13f93fe8b4c0936ab022099d4a9f44e4e45050d326756bf9232c
MD5 8a553b53d2160fd58494d46c473e533b
BLAKE2b-256 ade02e0f86ccf91309f9c192a75949b2cd542fc700448ef133c629906673e2a4

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp310-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 6c51ca3253229dd8ca2f21df958adcf563491c0941665381258b022b962900d0
MD5 8ce05952fa93d3c08a312d6be5dc167e
BLAKE2b-256 cfb0b72a11a714fdf3a423add4fcef24346f7407ed257c9161698b5613ef2166

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 59aa02a391f40e9259dd685632fd6312f43796d6412c72cb2bc4d4fa8f50576c
MD5 2fc7d3ba2a602d283f0d24b67d6b1e25
BLAKE2b-256 7ad011b9df3addbc537e68a53b777005b28676ed41ac6fabaf775921bd8e8112

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2fe95e82ede93f8c91f66d433e78403c6726049509de8abd14cbf4cc22184d9
MD5 62bc09f9b985c750475accbb3387dae8
BLAKE2b-256 6f3f513859587c6026c6ccc4e0b7586b41be07d831539b5da2d5a5eafa905628

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f02aa68a275a8ec1642b93eef6d2ffa00f26963cedc2f5e01305861af83ab31e
MD5 fbdfc0805074914c3b3bd44df44c28bd
BLAKE2b-256 883219ede808324288b6756522e6bd7d292f1a48417db3bfd4b15f3759a80c46

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92dd0df02be393941ad7178c3e668f23ae221f3c6f060dcd1f9edc4fd642aabd
MD5 a362551986460b07c7493ea5959f0a1c
BLAKE2b-256 a9789b926d51b685a84b9cf03499fe5936ceaafb2bdc0492803702758d537895

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7aa6fc2bb2a7cc4630bd8ea4d9b20f1cfbb54a830eb9d7ab88035655ef1458d5
MD5 81eff3e0256f80d0c8505425488bc4c5
BLAKE2b-256 1a66adb82c789975460aa2d0cbb24368cb6e2a7befc58f182009e534cbe19a81

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 b06cb92e097a23a7782fd8656c30ef8e0a005916b7445e8f441fae5d488d575d
MD5 99536a73d9664b113eda76d8833ef71b
BLAKE2b-256 7be0f78c36eff39550199af715b715d6aec0675785ee8c3d7cbc715c830bac02

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp39-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 88b389ff55b64806d8a716d0f8e69c5478e1d66c8cda8fe72b68ff848519aa76
MD5 ba9d15daba62e8e5841bb17ae6aa4831
BLAKE2b-256 371d1ce24fe9819d26802a54f2135cbdb6a111226daf741227ff1aec8da5157d

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 463cbc68c0035dcae8b8bdbe68fdaa48cd1d0bb3fb4158ca60375e6acf0e9d60
MD5 4abaff4733f951a1ade43c861090cdf9
BLAKE2b-256 f7be89347ee0455d2fa3a333c0f94866b2d4c7e8ec120642b26670dc00f7fe74

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 34416025d72bca82b19937c2681e3c993d290fed152f83198d6274e0334e9abf
MD5 8dce8df733d8333ab2b586208955837f
BLAKE2b-256 94f0e3921c3583974c5ddb17725d2db865750e87c38e72a2ea81a366b0b8b546

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77d5744cac8ae24c1ca968e7f49e28a1d76e236760b1a99fc14bc322212efa6f
MD5 e9ab3c6dc5f4a67f9e25df3093d1fa40
BLAKE2b-256 5d7a938405ab389dfde3dff1849a5eefa490ac38e66392511a6427bfecbd658f

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 db101c7dcf00a66b729cd34e5c64dcb00d6b13d529baac541baf9a3ed4d2d66f
MD5 eeea63d7c3921944c4126656f87bf9bf
BLAKE2b-256 8524eca30e1b3540cf33d6f840ae04b7567d14435860225603d2ed1d699621dc

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 6a532ca53bf5a2142bbd1a9c948e072374ba75c04a1ef3bee4d975da76ac8f47
MD5 0af82dc907071eccea69125df15b6a23
BLAKE2b-256 649e812cafcc836b6a88dfb2b5c2e2efb5976c2441933d9d0fabac78ea2eda1b

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp38-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp38-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f075b17d44db50bcadbd0472fa856faf6d933db13a47b36787865a3d177f478a
MD5 8d544eb81fe32e5c7c3ec155069c8845
BLAKE2b-256 2b130f1a993ade749d5a4682cbceeb0d04545c6185f0120fd4f7e2ae1bf54bf8

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a12be9d0ce7e6458640bc46bad6afac535d020b2366f1bb77059c641f67acae
MD5 fbde7e40c6cc23aaa6d39936bea6e387
BLAKE2b-256 5398fc964c58d8ed1756680a35d89f836d33d5540dfba49e25f16e9ea6bbf2f7

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 998348d55fc2a9a94e608d16d9910ebd5afce1238a180452cc66174230732020
MD5 71b0dff2d0edb8bbbc4c44b8bc52ee7b
BLAKE2b-256 0a56ba9d6016740332d288308412aa8085952bae8b55f79a5fd4b3580e68f048

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 873699114b20ca2bc2dba5518b7adb817fca85bfa2e61012727c84ce8ef7a662
MD5 640516dd293a93edd994a077b8eaab9b
BLAKE2b-256 2b08844721c47e0fb4691061f28b31a740e28c7f3e834ec12645d0e4d49eca03

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp37-none-win32.whl.

File metadata

  • Download URL: egobox-0.20.0-cp37-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for egobox-0.20.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 4d30c7d7acbf9df96ace1b6c5cbc45984e96bc587b164c960d4bf0e96baa34cb
MD5 6fcc6b531f8fb85474527e750c89889d
BLAKE2b-256 03d81a29624534e64c2b3efb6f0a24e8da86bed814878fa66468b31b01aa1170

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d6b92d469250442e68f4232fb4c510348f8dc2931ce0fabc52fd0419f853bbc
MD5 7880920726d5678dd106f135d5d345a6
BLAKE2b-256 80caa805f9b01ada5dd743b633ca5da6a6a731b804c200ef703cb1ed6e5a8728

See more details on using hashes here.

File details

Details for the file egobox-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e2f42e9ae23ed05d7af3a5897af6d6b217b382edc2a6b53a62c344f562e7530
MD5 fdd728bdba0d0b9ac109d79485b0f361
BLAKE2b-256 1b1befed9e93925a7763b109c1b2ac720b1dc6fb982d1b0d9ca4390577b5d37e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page