Skip to main content

A toolbox for efficient global optimization

Project description

egobox

tests pytests linting DOI

Rust toolbox for Efficient Global Optimization algorithms inspired from SMT.

egobox is twofold:

  1. for end-users: a Python module, the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, written in Rust.
  2. for developers: a set of Rust libraries useful to implement bayesian optimization (EGO-like) algorithms,

The Python module

Thanks to the PyO3 project, which makes Rust well suited for building Python extensions.

Installation

pip install egobox

Egor optimizer

import numpy as np
import egobox as egx

# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
    return (x - 3.5) * np.sin((x - 3.5) / (np.pi))

# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}")  # Optimization f=[-15.12510323] at [18.93525454]

Gpx surrogate model

import numpy as np
import egobox as egx

# Training
xtrain = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]).T
ytrain = np.array([[0.0, 1.0, 1.5, 0.9, 1.0]]).T
gpx = egx.Gpx.builder().fit(xtrain, ytrain)

# Prediction
xtest = np.linspace(0, 4, 20).reshape((-1, 1))
ytest = gpx.predict(xtest)

See the tutorial notebooks and examples folder for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.

The Rust libraries

egobox Rust libraries consists of the following sub-packages.

Name Version Documentation Description
doe crates.io docs sampling methods; contains LHS, FullFactorial, Random methods
gp crates.io docs gaussian process regression; contains Kriging, PLS dimension reduction and sparse methods
moe crates.io docs mixture of experts using GP models
ego crates.io docs efficient global optimization with constraints and mixed integer handling

Usage

Depending on the sub-packages you want to use, you have to add following declarations to your Cargo.toml

[dependencies]
egobox-doe = { version = "0.21" }
egobox-gp  = { version = "0.21" }
egobox-moe = { version = "0.21" }
egobox-ego = { version = "0.21" }

Features

The table below presents the various features available depending on the subcrate

Name doe gp moe ego
serializable ✔️ ✔️ ✔️
persistent ✔️ ✔️(*)
blas ✔️ ✔️ ✔️
nlopt ✔️ ✔️

(*) required for mixed-variable gaussian process

serializable

When selected, the serialization with serde crate is enabled.

persistent

When selected, the save and load as a json file with serde_json crate is enabled.

blas

When selected, the usage of BLAS/LAPACK backend is possible, see below for more information.

nlopt

When selected, the nlopt crate is used to provide optimizer implementations (ie Cobyla, Slsqp)

Examples

Examples (in examples/ sub-packages folder) are run as follows:

cd doe && cargo run --example samplings --release
cd gp && cargo run --example kriging --release
cd moe && cargo run --example clustering --release
cd ego && cargo run --example ackley --release

BLAS/LAPACK backend (optional)

egobox relies on linfa project for methods like clustering and dimension reduction, but also try to adopt as far as possible the same coding structures.

As for linfa, the linear algebra routines used in gp, moe ad ego are provided by the pure-Rust linfa-linalg crate, the default linear algebra provider.

Otherwise, you can choose an external BLAS/LAPACK backend available through the ndarray-linalg crate. In this case, you have to specify the blas feature and a linfa BLAS/LAPACK backend feature (more information in linfa features).

Thus, for instance, to use gp with the Intel MKL BLAS/LAPACK backend, you could specify in your Cargo.toml the following features:

[dependencies]
egobox-gp = { version = "0.21", features = ["blas", "linfa/intel-mkl-static"] }

or you could run the gp example as follows:

cd gp && cargo run --example kriging --release --features blas,linfa/intel-mkl-static

Citation

DOI

If you find this project useful for your research, you may cite it as follows:

@article{
  Lafage2022, 
  author = {Rémi Lafage}, 
  title = {egobox, a Rust toolbox for efficient global optimization}, 
  journal = {Journal of Open Source Software} 
  year = {2022}, 
  doi = {10.21105/joss.04737}, 
  url = {https://doi.org/10.21105/joss.04737}, 
  publisher = {The Open Journal}, 
  volume = {7}, 
  number = {78}, 
  pages = {4737}, 
} 

Additionally, you may consider adding a star to the repository. This positive feedback improves the visibility of the project.

References

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J. R. R. A., & Morlier, J. (2019). Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design. Aerospace Science and Technology, 90, 85–102. https://doi.org/10.1016/j.ast.2019.03.041

Bouhlel, M. A., Bartoli, N., Otsmane, A., & Morlier, J. (2016). Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction. Structural and Multidisciplinary Optimization, 53(5), 935–952. https://doi.org/10.1007/s00158-015-1395-9

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. R. A. (2019). A python surrogate modeling framework with derivatives. Advances in Engineering Software, 102662. https://doi.org/10.1016/j.advengsoft.2019.03.005

Dubreuil, S., Bartoli, N., Gogu, C., & Lefebvre, T. (2020). Towards an efficient global multi- disciplinary design optimization algorithm. Structural and Multidisciplinary Optimization, 62(4), 1739–1765. https://doi.org/10.1007/s00158-020-02514-6

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

Diouane, Youssef, et al. "TREGO: a trust-region framework for efficient global optimization." Journal of Global Optimization 86.1 (2023): 1-23.

smtorg. (2018). Surrogate modeling toolbox. In GitHub repository. GitHub. https://github.com/SMTOrg/smt

License

Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

egobox-0.21.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

egobox-0.21.1-cp312-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

egobox-0.21.1-cp312-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.12 Windows x86

egobox-0.21.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

egobox-0.21.1-cp312-cp312-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

egobox-0.21.1-cp312-cp312-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

egobox-0.21.1-cp311-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

egobox-0.21.1-cp311-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86

egobox-0.21.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

egobox-0.21.1-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

egobox-0.21.1-cp311-cp311-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

egobox-0.21.1-cp310-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

egobox-0.21.1-cp310-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86

egobox-0.21.1-cp310-cp310-manylinux_2_35_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

egobox-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

egobox-0.21.1-cp310-cp310-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

egobox-0.21.1-cp310-cp310-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

egobox-0.21.1-cp39-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

egobox-0.21.1-cp39-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86

egobox-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

egobox-0.21.1-cp39-cp39-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

egobox-0.21.1-cp39-cp39-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

egobox-0.21.1-cp38-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

egobox-0.21.1-cp38-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86

egobox-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

egobox-0.21.1-cp37-none-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

egobox-0.21.1-cp37-none-win32.whl (2.8 MB view details)

Uploaded CPython 3.7 Windows x86

egobox-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

egobox-0.21.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file egobox-0.21.1.tar.gz.

File metadata

  • Download URL: egobox-0.21.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1.tar.gz
Algorithm Hash digest
SHA256 14a68ef726836a9fce597025514d6082ac3d5b9c7ea954ba7ae54b90b1d4bb49
MD5 4c323a6ff174936bd7183284a0c1d75d
BLAKE2b-256 de228fbea6a7623628f98cf903aa5c86c3dd49eb87b6963d7ee8efec2a472d51

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71873c82dac4058f3853e2b8d8fa2dc1cca7ef8b6af00c64d7b4b1e05c408e91
MD5 fe29cfca5d4b6a2a140f64d6618325ff
BLAKE2b-256 8fe8f116a8d750a23a1b37cef02d48a0bf40ac5627704665d3bbeb1a97c50232

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41be9297fdf5ca09c81ac8565498a107788a426ea421484f7f46a2a55f79aadf
MD5 8cc842f6fd36b3e4cff7704f78dc1c89
BLAKE2b-256 8d68ca472659642d244510e5919edea696c0420728b07e44bab2d37c57d00d53

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0109c0aadb5eba110956633a747fb3851fb84ac72bb1099097421da9cbfac2c9
MD5 3b22ad6e0d101768f7cb581bc2106f5b
BLAKE2b-256 d6f3884943741fb212ce51c0a349efddb2554edb6b3aeaf9632c1f2bf92f0288

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5c17065f970504c83c1b63e14b8d2fb4dfaee6df502723d95001a7f2f434a9c
MD5 c3e28a5749467cea53743dd260d7ad7a
BLAKE2b-256 b8f09bbad3e6fad39606560f2b5496aac8ee22621abbb4a32a285007a3156e56

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f3c7a5f47a7b986163bbb62bfebba169f57d0f7fa13f36d18faa5212cdc8de33
MD5 c9c263e095ce888ecf22ab38d12edfbb
BLAKE2b-256 fce7ff2aef80ffd2ea5997cdb16dd343e7b71472774e8a77c96eed54e9d5ba9c

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp312-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 6b6e27c23d7e873f9a7b0ff6369ad06abc60879b20e75b1b5a75fd653e61c3e3
MD5 72caf3fada8c02b6a2765952c810465a
BLAKE2b-256 ef2cdbd455c0becbde5f45542d917a00fc488e3124385a3122c45a7c8e319645

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef0e46dc013af3ddd4732acfe54cf3776a7200c896c89c12deec709924b18881
MD5 887720fe972c13eb6921213fc5201839
BLAKE2b-256 d7e6eaa05991988558d93e89672a03f845fc431f2d8ee860bf6a2e5acaf05248

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a23a2ad16f044ff0721abaa978e3244eefba738284cbbc4cfb5f7e2fba9eb419
MD5 091cfbc041095c0fbb12c2c571463022
BLAKE2b-256 d2bfdd542ded4ff2a067c34910d7e5aba9101eb7941fc428b01e42b1098ec1ef

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2b77a53b1a02edba266c1bf27b108e4973aa25658efce96348a55b2672c41c7
MD5 4526ca2e5a63ffba6b132d55513d3fb4
BLAKE2b-256 6821005c3a1d733e83fbfb62cd21af27f821ae0c3c75a5332b39d683d3bb4ebb

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 78fb4a1b57ec74d86cac8fbd0d1fb52ee30eef43b4dde62b7036ae0a6fffb480
MD5 6968259adabfec353c0a09a3551f8c46
BLAKE2b-256 931872752f9b4600f273bff3857b8bc95c369146b73bd7475861a1ee3e716bfb

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 82b14dd3229b9c9b02a05d9af0bbbaee588bfb1e5e3743a952a696402b8e544e
MD5 11ecbe242a7448065822baf7fd7bb034
BLAKE2b-256 daed9d01d785c24ac04ed8f28fe8204ceefaf042ba7b8a569e19a364ddc99b96

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp311-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 7ca6d39968bd996741b28db3c8588808886ac7910383e74d3d2f9a4781e1d82b
MD5 7931f0d9aa800f55f1b773b26b01f947
BLAKE2b-256 eb3317da32cb27568c8a077a29cb32452fefff49381357cbe1cc3d1adb021be4

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d73f44e68c02eb6c7f76d16be0b8f0236fd96978a9be2b0201c5fa78a0bc70c9
MD5 051e56d16e7d6566f22b85e2fbf03636
BLAKE2b-256 fdb8ab3b238f6825b17c739aaeb25f1c004ce2afa7dacd5b8cc37bd019632d9d

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ae554b414a9099c386c33d898029ef63a0a8b5c0a82c4d08055aa813b4e400e
MD5 ba928a6d6db6fd14ae2496f5fb2fad37
BLAKE2b-256 06006f76c915743de52f1014a06b97946de752a90e271b16c65e2d97f24a066d

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08e2eb01b70dd6144c546383df179b075c1514ae5c8326b0ac031414822e530b
MD5 79a20f840882126a0790dd8fbdb22f59
BLAKE2b-256 03f1177d7d089c2908d40c19ce4c3bfc226a26954f332f0d425405af056a1074

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 20af1d547b51035b8983f65511eff523f36f0ddbb171eb2fa011f1c1f23a1de2
MD5 abb2bb281c98ac41ec6bd86df2e610d9
BLAKE2b-256 dd91acd6325d852beb85dda9eb3c754a34880e70f3e34238d8fda0a2c9f936ee

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f24241b418d99a2e5d6efda8d950c7df1b309e60ed59a9815fa6be250f34839f
MD5 4c3d163f47b916d07e06883c774abb28
BLAKE2b-256 6b747f279e4a6259a75d79006c9267321cad9e277da15d4c7e51db9347dc5a64

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp310-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 175468e5aca55761d83baf0aff85b295fb069c02d54af3a418b6e8f94157feeb
MD5 d8561f70413918c259ca08bb726b1c8e
BLAKE2b-256 2139c4d22ee4b8a208c598de7b7808dd0c94ba08d3167a505bd7ffba2fe3eadd

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 13b51cced2eeb38c85b505cca172b4327f31bbe9279717dc8222c130f452337b
MD5 e6da2e9d537064f5bf39d15c57c971ea
BLAKE2b-256 50190c1b39f38daf03524ada9d515c551869a1faa6701b61482534f32a8f2224

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86e367fd460675f67a1bbf66cba6f054c842039de9570ea763b275b77a6e4061
MD5 7d41ee113ead352375f6afb0573612c1
BLAKE2b-256 02b9a955f74d4adf5017a8f9c56360b8d9105f872c23ba8dea7ad0743992bde6

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28dc0a2302399937b0edc8c2f263c2911412309f26feeec3e3a74286fd4f1027
MD5 3f7d1e876f266e91ddcd22f1882b526d
BLAKE2b-256 a41f77c6acaec43b3201977d64c512e84dd001e47a8dc3773708c786e1c3ccdd

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20d5890e71532bef8930160817c383f493f0312749bbda4d135006206f9fb642
MD5 83b55a645d15f9cb055f842fa8bac8cf
BLAKE2b-256 8227ff0dd11e42bcb938fca6bda1008d4c6382057d6ea6ec78e9a265f99cf274

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c332fd475f382dd6a486ec197a0c83fad9c22b3e2f9b7f81e5bf8a38569efc86
MD5 62a4bd47a3f164d6fac09e2b7cbd992e
BLAKE2b-256 c8423bd3300d44676f72fa1ed313b32702ad32b2d31451af14ddd18756a12eae

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8f860002414e10d50f7f1bcb29f29a1a9b4b04d2f3882b85967fa770a4d0cf70
MD5 a88bc7cc06cbb185c5894d977b48f0a9
BLAKE2b-256 d827418944fbdc138c90e1e8542e487cbd402299b6dc579d93ce4426d7b559d4

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp39-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f57abff09e70db6b678ba2ed79b4e5521896ddd621894d04b0ee65d481ec0bf1
MD5 78eb05158228ad8317fff1d1ffbd189e
BLAKE2b-256 9ede7d62691cd6896935fb6f9c3f8e0e7066ed161216c3c50c9c9c4ac0b5ebd4

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8da09d2a1c6e0184f5cb1a67a05564501b39b160d5be13684a55485827bcffd8
MD5 80783d7ee706c847d561d8a33e89030f
BLAKE2b-256 1fb129c639100e40817da046bac2cdd98048d6135a7df5461e507a89715a77ad

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3907781ef8b274674ce7d786fdaf137a7d9f83077b79bcf9d896ab3f03620775
MD5 5e0ccef73fb284c36101cdd365e009bc
BLAKE2b-256 973feabed02bc26733409154cff1ffa2a735440df80348083ca352f0f6354960

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efb85d178dbba6fce855179bfbd4ad7b1d1e18a9a799d2c374e25342fd809c68
MD5 30da82fc029bb439e32699a3310df1e7
BLAKE2b-256 c430190a89e260b36388f469cfcfbab226a5a69f729e8344209e0e82f49eef42

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 12bd5d186b695c46fb722d9defa19ec40797600eba30d8741bfbfc9b8655a835
MD5 8caf74d4a066b435af6646916611406e
BLAKE2b-256 bf003e032867f505cbb0f5854a5863d4afdd56dcb90b32e4e63d88d71585b569

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 1b746d141de3ed6100220c2463aca6c9b7e53b5ddf11014928924f24c5c2af93
MD5 8db2b75cf492a7b0b18128409233572d
BLAKE2b-256 324fabcd37715aa699433fccf15300d2b6858b3aaeec5a3dbba17f8f3b44cf6f

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp38-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp38-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 6d7f0dff05eba6091b7f32f6b6f4ddd74c5721f621b010e9f427ba3700ff1370
MD5 4d5715bfcede2383c96f497fef65f098
BLAKE2b-256 7e056d374a8611ffeee72cd217749adddd8402429c07299040a74b66e1300e1c

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5fc50aa4930d1ee53fd63938bfabf7487ca1687b7ef74aa482a86da301e962a
MD5 0cf677a25a72c817ce53f050d5ae5c19
BLAKE2b-256 3dab35475c609a983044826b53fd0b42e54e230a5cf4687d52840aa41caba2c2

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cea70a290197fc3f2862ceae4434877afc5462603bc411c98696749d0d474d05
MD5 1b1707b0beeec39da23551292a9655ad
BLAKE2b-256 ee7340a6b53f954b06a43bdfa9d68e52bfbe8436ee09a5b61c1de9754a276ea3

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 df822a1d134bac7afa6dbf31883ac63ac327d8d37a1e9fecbad54573d6cd5b26
MD5 ad732eba30cacaa455b7ceda89a947ca
BLAKE2b-256 8d145a43f0e2d5aabc481614df92e8dc971c6469c24ddb5c9e60a7d885a58efb

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp37-none-win32.whl.

File metadata

  • Download URL: egobox-0.21.1-cp37-none-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for egobox-0.21.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 639978f94cdfc443e56d7d83440fb0456217d5906d0746882f19ae822349d2d3
MD5 bcdb0bf499211297fa72bbe6acf8520c
BLAKE2b-256 fb4df19769800ea25e30f53070322edb3fefd26688eb7d2188a65ca3896368d3

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b679808434e7528cc5b3af54fcc85cc09e925488153fb4ec3bc85d8f05ab745d
MD5 d1121fb479fa2d7e66195630cf4d7f69
BLAKE2b-256 bfb89f0d33bd9821bd70d9b644fc805e5869c43c34526ab2f5f54cf21e20b219

See more details on using hashes here.

File details

Details for the file egobox-0.21.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for egobox-0.21.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0cd43289cc281b90b9c70a1f8b995b2989d7485986dfe450b3f04edcf1c16bac
MD5 edc270feaf728a2b53bd52f80ee87fcd
BLAKE2b-256 e5842c011c8911e76a91eb8729f0e7353828fe8595d1aa245f285261525b81da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page