Skip to main content

Keep consistent order of eigenvalues and eigenvectors of successive eigenvalue/vector problems based on the inital ordering of eigenvalues from low to high by matching closest eigenvectors and eigenvalues.

Project description

Python versions on PyPI CeNTREX-TlF version on PyPI Code style: black

eigenshuffle

Adapted from code by bmachiel, which in turn was based on matlab eigenshuffle.

Consistently sort eigenvalues and eigenvectors of a series of matrices based on initial ordering from low to high.

Includes eigenshuffle_eig and eigenshuffle_eigh for non-hermitian and hermitian matrices, respectively.

Installation

Install from pypi with:

pip install eigenshuffle

or clone repo and install with pip or directly install from GitHub with:

pip install git+https://github.com/ograsdijk/eigenshuffle

Example

import numpy as np
import numpy.typing as npt
import matplotlib.pyplot as plt

from eigenshuffle import eigenshuffle_eig

def eigenvalue_function(
    t: float,
) -> npt.NDArray[np.float_]:
    return np.array(
        [
            [1, 2 * t + 1, t**2, t**3],
            [2 * t + 1, 2 - t, t**2, 1 - t**3],
            [t**2, t**2, 3 - 2 * t, t**2],
            [t**3, 1 - t**3, t**2, 4 - 3 * t],
        ]
    )

tseq = np.arange(-1, 1.1, 0.1)
Aseq = np.array([eigenvalue_function(ti) for ti in tseq])

e, v = np.linalg.eig(Aseq)

es, vs = eigenshuffle_eig(Aseq)

# sorting original eig result from low to high
v[np.argsort(e)]
e = np.sort(e)

fig, ax = plt.subplots()
lines = ax.plot(tseq, e)

for i in range(ei.shape[-1]):
    ax.plot(tseq, ei.real[:, i], "--", color=lines[i].get_color())

# for generating the legend
line1 = plt.Line2D([0, 1], [0, 1], linestyle="-", color="black")
line2 = plt.Line2D([0, 1], [0, 1], linestyle="--", color="black")

ax.set_xlabel("t")
ax.set_ylabel("eigenvalue")
ax.legend([line1, line2], ["sorted", "eigenshuffle"])
ax.grid()

consistenly sorted eigenvalues
Here the eigenvalues are consistently ordered, and are not switching positions after a level crossing (around t=0.3) when using eigenshuffle.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eigenshuffle-0.1.1.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

eigenshuffle-0.1.1-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file eigenshuffle-0.1.1.tar.gz.

File metadata

  • Download URL: eigenshuffle-0.1.1.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Windows/11

File hashes

Hashes for eigenshuffle-0.1.1.tar.gz
Algorithm Hash digest
SHA256 e97ebfa795e2cebe7d4aca167cef839fd58778bf8aee03a18e44e3b1514ee4fb
MD5 e2e2ea3baf086990f223fa4af07037bf
BLAKE2b-256 707123f5092962cd317ee8333743323745b93c12403b707fdeb20d0ddc455857

See more details on using hashes here.

File details

Details for the file eigenshuffle-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: eigenshuffle-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Windows/11

File hashes

Hashes for eigenshuffle-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 43f82e579f7f74d0ddb79d97d2804e07389ca8bb549bfddc565c405ae1a610b4
MD5 1773b38e456a30fa41bceca9bfd9d0d0
BLAKE2b-256 5e646d2c2432ba71a77c2dad8c3e0955d87313500743c5027230d5b80ca7ffd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page