Skip to main content

Element Embeddings

Project description

ElementEmbeddings

made-with-python License: MIT Code style: black GitHub issues CI Status codecov DOI PyPI Conda documentation python version

The Element Embeddings package provides high-level tools for analysing elemental and ionic species embeddings data. This primarily involves visualising the correlation between embedding schemes using different statistical measures.

Motivation

Machine learning approaches for materials informatics have become increasingly widespread. Some of these involve the use of deep learning techniques where the representation of the elements is learned rather than specified by the user of the model. While an important goal of machine learning training is to minimise the chosen error function to make more accurate predictions, it is also important for us material scientists to be able to interpret these models. As such, we aim to evaluate and compare different atomic embedding schemes in a consistent framework.

Getting started

ElementEmbeddings's main feature, the Embedding class is accessible by importing the class.

Installation

The latest stable release can be installed via pip using:

pip install ElementEmbeddings

Alternatively, ElementEmbeddings is available via conda through the conda-forge channel on Anaconda Cloud:

conda install -c conda-forge elementembeddings

For installing the development or documentation dependencies via pip:

pip install "ElementEmbeddings[dev]"
pip install "ElementEmbeddings[docs]"

For development, you can clone the repository and install the package in editable mode. To clone the repository and make a local installation, run the following commands:

git clone https://github.com/WMD-group/ElementEmbeddings.git
cd ElementEmbeddings
pip install  -e ".[docs,dev]"

With -e pip will create links to the source folder so that changes to the code will be immediately reflected on the PATH.

Usage

For simple usage, you can instantiate an Embedding object using one of the embeddings in the data directory. For this example, let's use the magpie elemental representation.

# Import the class
>>> from elementembeddings.core import Embedding

# Load the magpie data
>>> magpie = Embedding.load_data("magpie")

We can access some of the properties of the Embedding class. For example, we can find the dimensions of the elemental representation and the list of elements for which an embedding exists.

# Print out some of the properties of the ElementEmbeddings class
>>> print(f"The magpie representation has embeddings of dimension {magpie.dim}")
>>> print(
...     f"The magpie representation contains these elements: \n {magpie.element_list}"
... )  # prints out all the elements considered for this representation
>>> print(
...     f"The magpie representation contains these features: \n {magpie.feature_labels}"
... )  # Prints out the feature labels of the chosen representation

The magpie representation has embeddings of dimension 22
The magpie representation contains these elements:
['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk']
The magpie representation contains these features:
['Number', 'MendeleevNumber', 'AtomicWeight', 'MeltingT', 'Column', 'Row', 'CovalentRadius', 'Electronegativity', 'NsValence', 'NpValence', 'NdValence', 'NfValence', 'NValence', 'NsUnfilled', 'NpUnfilled', 'NdUnfilled', 'NfUnfilled', 'NUnfilled', 'GSvolume_pa', 'GSbandgap', 'GSmagmom', 'SpaceGroupNumber']

Plotting

We can quickly generate heatmaps of distance/similarity measures between the element vectors using heatmap_plotter and plot the representations in two dimensions using the dimension_plotter from the plotter module. Before we do that, we will standardise the embedding using the standardise method available to the Embedding class

from elementembeddings.plotter import heatmap_plotter, dimension_plotter
import matplotlib.pyplot as plt

magpie.standardise(inplace=True)  # Standardises the representation

fig, ax = plt.subplots(1, 1, figsize=(6, 6))
heatmap_params = {"vmin": -1, "vmax": 1}
heatmap_plotter(
    embedding=magpie,
    metric="cosine_similarity",
    show_axislabels=False,
    cmap="Blues_r",
    ax=ax,
    **heatmap_params
)
ax.set_title("Magpie cosine similarities")
fig.tight_layout()
fig.show()
Cosine similarity heatmap of the magpie representation
fig, ax = plt.subplots(1, 1, figsize=(6, 6))

reducer_params = {"n_neighbors": 30, "random_state": 42}
scatter_params = {"s": 100}

dimension_plotter(
    embedding=magpie,
    reducer="umap",
    n_components=2,
    ax=ax,
    adjusttext=True,
    reducer_params=reducer_params,
    scatter_params=scatter_params,
)
ax.set_title("Magpie UMAP (n_neighbours=30)")
ax.legend().remove()
handles, labels = ax1.get_legend_handles_labels()
fig.legend(handles, labels, bbox_to_anchor=(1.25, 0.5), loc="center right", ncol=1)

fig.tight_layout()
fig.show()
Scatter plot of the Magpie representation reduced to 2 dimensions using UMAP

Compositions

The package can also be used to featurise compositions. Your data could be a list of formula strings or a pandas dataframe of the following format:

formula
CsPbI3
Fe2O3
NaCl
ZnS

The composition_featuriser function can be used to featurise the data. The compositions can be featurised using different representation schemes and different types of pooling through the embedding and stats arguments respectively.

from elementembeddings.composition import composition_featuriser

df_featurised = composition_featuriser(df, embedding="magpie", stats=["mean", "sum"])

df_featurised
formula mean_Number mean_MendeleevNumber mean_AtomicWeight mean_MeltingT mean_Column mean_Row mean_CovalentRadius mean_Electronegativity mean_NsValence mean_NpValence mean_NdValence mean_NfValence mean_NValence mean_NsUnfilled mean_NpUnfilled mean_NdUnfilled mean_NfUnfilled mean_NUnfilled mean_GSvolume_pa mean_GSbandgap mean_GSmagmom mean_SpaceGroupNumber sum_Number sum_MendeleevNumber sum_AtomicWeight sum_MeltingT sum_Column sum_Row sum_CovalentRadius sum_Electronegativity sum_NsValence sum_NpValence sum_NdValence sum_NfValence sum_NValence sum_NsUnfilled sum_NpUnfilled sum_NdUnfilled sum_NfUnfilled sum_NUnfilled sum_GSvolume_pa sum_GSbandgap sum_GSmagmom sum_SpaceGroupNumber
CsPbI3 59.2 74.8 144.16377238 412.55 13.2 5.4 161.39999999999998 2.22 1.8 3.4 8.0 2.8000000000000003 16.0 0.2 1.4 0.0 0.0 1.6 54.584 0.6372 0.0 129.20000000000002 296.0 374.0 720.8188619 2062.75 66.0 27.0 807.0 11.100000000000001 9.0 17.0 40.0 14.0 80.0 1.0 7.0 0.0 0.0 8.0 272.92 3.186 0.0 646.0
Fe2O3 15.2 74.19999999999999 31.937640000000002 757.2800000000001 12.8 2.8 92.4 2.7960000000000003 2.0 2.4 2.4000000000000004 0.0 6.8 0.0 1.2 1.6 0.0 2.8 9.755 0.0 0.8442651200000001 98.80000000000001 76.0 371.0 159.6882 3786.4 64.0 14.0 462.0 13.98 10.0 12.0 12.0 0.0 34.0 0.0 6.0 8.0 0.0 14.0 48.775000000000006 0.0 4.2213256 494.0
NaCl 14.0 48.0 29.221384640000004 271.235 9.0 3.0 134.0 2.045 1.5 2.5 0.0 0.0 4.0 0.5 0.5 0.0 0.0 1.0 26.87041666665 1.2465 0.0 146.5 28.0 96.0 58.44276928000001 542.47 18.0 6.0 268.0 4.09 3.0 5.0 0.0 0.0 8.0 1.0 1.0 0.0 0.0 2.0 53.7408333333 2.493 0.0 293.0
ZnS 23.0 78.5 48.7225 540.52 14.0 3.5 113.5 2.115 2.0 2.0 5.0 0.0 9.0 0.0 1.0 0.0 0.0 1.0 19.8734375 1.101 0.0 132.0 46.0 157.0 97.445 1081.04 28.0 7.0 227.0 4.23 4.0 4.0 10.0 0.0 18.0 0.0 2.0 0.0 0.0 2.0 39.746875 2.202 0.0 264.0

The returned dataframe contains the mean-pooled and sum-pooled features of the magpie representation for the four formulas.

Development notes

Bugs, features and questions

Please use the issue tracker to report bugs and any feature requests. Hopefully, most questions should be solvable through the docs. For any other queries related to the project, please contact Anthony Onwuli by e-mail: anthony.onwuli16@imperial.ac.uk.

Code contributions

We welcome new contributions to this project. See the contributing guide for detailed instructions on how to contribute to our project.

Add an embedding scheme

The steps required to add a new representation scheme are:

  1. Add data file to data/element_representations.
  2. Edit docstring table in core.py.
  3. Edit utils/config.py to include the representation in DEFAULT_ELEMENT_EMBEDDINGS and CITATIONS.
  4. Update the documentation reference.md and README.md.

Developer

References

A. Onwuli et al, "Ionic species representations for materials informatics"

H. Park et al, "Mapping inorganic crystal chemical space" Faraday Discuss. (2024)

A. Onwuli et al, "Element similarity in high-dimensional materials representations" Digital Discovery 2, 1558 (2023)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elementembeddings-0.6.1.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

ElementEmbeddings-0.6.1-py3-none-any.whl (3.0 MB view details)

Uploaded Python 3

File details

Details for the file elementembeddings-0.6.1.tar.gz.

File metadata

  • Download URL: elementembeddings-0.6.1.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for elementembeddings-0.6.1.tar.gz
Algorithm Hash digest
SHA256 15064f5a3d436a68b66874da556a6a102c66c4077e4153181adcc6e6fec15504
MD5 ff1064f148f8d83ecb9fd4c574dcfe68
BLAKE2b-256 167b845306c577c1a7afd24a7520736eafa69e25100c6da793bf1d6aba95b7bd

See more details on using hashes here.

File details

Details for the file ElementEmbeddings-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ElementEmbeddings-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 542ac436401e805e463d39885a9a2a98d222dc9c50d67b22f7d31c861a9fae65
MD5 c88bba278bac084e9344e4c81a0fabe3
BLAKE2b-256 104df2ed2790d2d6465e98a20165866980a8972ff5a510132f340d27bba0799c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page