Emerge Computational Filesystem.
Project description
Serverless, object-oriented, computational file system for python
emerge combines the notion of an object persistent store and service API mesh into one design as a distributed filesystem with computational features.
Whereas with current REST/API type architectural patterns, you would do the following:
- Create database schemas representing your data objects (data modeling)
- Retrieve data from databases using separate query language (e.g. SQL)
- Map data query results back into objects
- Write separate code that operates on the re-hydrated objects (business logic)
- Write separate code still that exposes said operations over a network (API)
- Write separate code still that translates from incoming requests to said operations and said objects (HTTP)
- And keeping everything in sync, probably writing more code to make this maintenance headache easier
- All these transformations are slow, difficult to manage and get in the way of actual work
With emerge, you simply:
- Create a custom python class that encapsulates your data and methods that operate on that data.
- Store the objects in the emerge filesystem
- Request those objects by their path (same as a file)
- Run methods on retrieved objects (locally or remotely: implicit servicing)
- Celebrate!
Benefits
- No Database schemas or query languages
- No
Impedence Mismatches
between layers - No visible middleware
- No protocol hassles
- No API scaffolding
- Ultra fast
- Ultra simple
- Plain Old Python end-to-end
- Scriptable CLI for interacting with filesystem
Usage
$ emerge
Usage: emerge [OPTIONS] COMMAND [ARGS]...
Options:
--debug Debug switch
--help Show this message and exit.
Commands:
call Call an object method
cat Display contents of an object
code List source code of an object
cp Copy object command
help Display details of an objects class
ls List files in a directory
methods Display available methods for an object
mkdir Make directory command
node Emerge node commands
query Execute query method of an object
rm Remove object command
Examples
from emerge.core.client import Client
from emerge.core.objects import EmergeFile
@dataclass
class InventoryItem(EmergeFile):
""" Create your own classes on-the-fly """
unit_price: float = 0.0
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
item = InventoryItem(
id="widget1",
name="widget",
path="/inventory",
unit_price=3.0,
quantity_on_hand=10,
data="A widget{} data".format(1),
)
client = Client("0.0.0.0", "5558") # Connect to any node
# Stores item under path /inventory/widget
client.store(item)
Execute object methods as-a-service
NOTE: Method runs on the host containing the object
client.run("/inventory/widget", "total_cost")
Retrieve object and run methods on it locally
widget = client.get("/inventory/widget")
total_cost = widget.total_cost()
Browse Filesystem
Browse the emerge object filesystem from command line:
$ emerge ls
inventory
$ emerge ls -l
rwxrwxrwx 1 Aug 31 2022 14:08:37 inventory
$ emerge ls -l /inventory
rwxrwxrwx 5.6K Aug 31 2022 14:08:37 widget
$ emerge cat /inventory/widget
{"name": "widget", "path": "/inventory", "id": "widget1", "price": 3.0, "quantity": 10, "perms": "rwxrwxrwx", "type": "file", "data": "A widget1 data"}
$
Listing the directory, shows the directory contents length in the size column. In this case "1". For the widget object, the object size is shown 5.6K
Execute Remote Methods
NOTE: Method executes on the server, only results are returned
$ emerge call /inventory/widget total_cost
30.0
Important to understand that the custom class
InventoryItem
with its methods was created in the client, on-the-fly and stored in emerge. No code update, recompile, redeploy of the emerge network is needed.
Execute Local Methods
NOTE: Object (including its state/data) is retrieved from the server and the method invoked in the local process
$ emerge call --local /inventory/widget total_cost
30.0
Execute A Method on All Objects in a Directory
NOTE: Execution occurs on the server
$ emerge call /inventory total_cost
[30.0, 434.10034997376107, 137.4442513978148, 907.5910237092307, 129.6896355950612, 705.798940493996, 589.6721640143035, 1408.5984146794274, 1722.7589088095774]
Getting Help on an Object
$ emerge help /inventory/widget1
Help on InventoryItem in module __main__ object:
class InventoryItem(emerge.core.objects.EmergeFile)
| InventoryItem(id: str, data: str = '', name: str = '', path: str = '/', perms: str = 'rwxrwxrwx', type: str = 'file', unit_price: float = 0.0, quantity_on_hand: int = 0) -> None
|
| Class for keeping track of an item in inventory.
|
| Method resolution order:
| InventoryItem
| emerge.core.objects.EmergeFile
| emerge.core.objects.EmergeObject
| emerge.data.EmergeData
| persistent.Persistent
| builtins.object
|
| Methods defined here:
|
| __eq__(self, other)
|
| __init__(self, id: str, data: str = '', name: str = '', path: str = '/', perms: str = 'rwxrwxrwx', type: str = 'file', unit_price: float = 0.0, quantity_on_hand: int = 0) -> None
:
Getting Methods of an Object
$ emerge methods /inventory/widget7
run ()
total_cost () -> float
Showing the Source Code of an Object
$ emerge code /inventory/widget1
@dataclass
class InventoryItem(EmergeFile):
"""Class for keeping track of an item in inventory."""
unit_price: float = 0.0
quantity_on_hand: int = 0
def run(self):
return "total cost:{}".format(self.total_cost())
def total_cost(self) -> float:
import logging
logging.debug("InventoryItem: total_cost executing")
return self.unit_price * self.quantity_on_hand
def __str__(self):
import json
return json.dumps(
{
"name": self.name,
"path": self.path,
"id": self.id,
"unit_price": self.unit_price,
"quantity_on_hand": self.quantity_on_hand,
"perms": self.perms,
"type": self.type,
"data": self.data,
}
)
Getting Objects
emerge
is a distributed and federated namespace platform serving python objects like a filesystem.
When requesting an object by path, you can connect to any node in the filesystem to make this request.
If that node does not host the object, it will consult the broker which will have a reference to where the file path is being held and retrieve it from that node.
In the example output below, let's assume we have stored the object /inventory/widget1
on the broker node.
The node at localhost:5559
does not have knowledge of that object.
When we attempt to ask localhost:5559
for /inventory/widget
it first checks its own registry for that path, if it doesn't have it, it passes the request to the broker and you get the expected result.
The second call emerge cat /inventory/widget1
defaults to requesting the object from the broker.
$ emerge -h localhost:5559 cat /inventory/widget1
{"data": "A widget1 data", "date": "Jan 15 2023 03:00:31", "id": "widget1", "name": "widget1", "node": "", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 10, "totalcost": 30.0, "type": "file", "unit_price": 3.0, "uuid": "af9720c3-01f8-43bd-b0a4-6988b0061997"}
$ emerge cat /inventory/widget1
{"data": "A widget1 data", "date": "Jan 15 2023 03:00:31", "id": "widget1", "name": "widget1", "node": "", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 10, "totalcost": 30.0, "type": "file", "unit_price": 3.0, "uuid": "af9720c3-01f8-43bd-b0a4-6988b0061997"}
Querying the Filesystem
Query With a Lambda
emerge
doesn't have a DSL query language, it uses plain-old-python
! This removes a lot of layers, mappings, serializers and other complexities used between traditional SQL databases, ORMs, objects etc.
Simpler is better!
from emerge.core.client import Client
client = Client("0.0.0.0", "5558")
results = client.search(lambda o: hasattr(o, 'unit_price') and o.unit_price < 3.5)
print(results)
['{"data": "A widget1 data", "id": "widget1", "name": "widget1", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 10, "totalcost": 0.0, "type": "file", "unit_price": 3.0, "uuid": "c959c600-9404-4d94-b8d4-135b8e631da1"}',
'{"data": "A widget1 data", "id": "widget1", "name": "widget1", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 10, "totalcost": 0.0, "type": "file", "unit_price": 3.0, "uuid": "ec7a3450-c02e-4405-a522-55f56c48106f"}',
'{"data": "A widget2 data", "id": "widget2", "name": "widget2", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 11, "totalcost": 0.0, "type": "file", "unit_price": 3.4092252235237934, "uuid": "86b6802a-5fad-4305-95ec-ae56c7e1d1ee"}',
'{"data": "A widget3 data", "id": "widget3", "name": "widget3", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 26, "totalcost": 0.0, "type": "file", "unit_price": 3.2701771680050653, "uuid": "157676d2-80fc-4737-a895-a3ed69809fa6"}',
'{"data": "A widget1 data", "id": "widget1", "name": "widget1", "path": "/inventory", "perms": "rwxrwxrwx", "quantity_on_hand": 10, "totalcost": 0.0, "type": "file", "unit_price": 3.0, "uuid": "57c2dc38-beef-461e-b77b-a736656a2a61"}']
Using a QueryObject
Given the following object with a defined query
method, using the query
command will invoke the query method passing in a reference to the filesystem for the method to query.
@dataclass
class QueryFile(EmergeFile):
import persistent.list
results = persistent.list.PersistentList()
def query(self, fs):
"""This only runs on the server and receives the filesystem object to traverse"""
self.results = []
for obj in fs.dir("/inventory"):
if obj.unit_price < 15:
self.results.append(obj)
return [str(result) for result in self.results]
Invoke the query object
$ emerge query /queries/query1
[{"name": "widget1", "path": "/inventory", "id": "widget1", "unit_price": 3.0, "quantity_on_hand": 10, "perms": "rwxrwxrwx", "type": "file", "data": "A widget1 data"}, {"name": "widget2", "path": "/inventory", "id": "widget2", "unit_price": 14.470011665792036, "quantity_on_hand": 30, "perms": "rwxrwxrwx", "type": "file", "data": "A widget2 data"}, {"name": "widget3", "path": "/inventory", "id": "widget3", "unit_price": 10.57263472290883, "quantity_on_hand": 13, "perms": "rwxrwxrwx", "type": "file", "data": "A widget3 data"}, {"name": "widget1", "path": "/inventory", "id": "widget1", "unit_price": 3.0, "quantity_on_hand": 10, "perms": "rwxrwxrwx", "type": "file", "data": "A widget1 data"}, {"name": "widget2", "path": "/inventory", "id": "widget2", "unit_price": 14.470011665792036, "quantity_on_hand": 30, "perms": "rwxrwxrwx", "type": "file", "data": "A widget2 data"}, {"name": "widget3", "path": "/inventory", "id": "widget3", "unit_price": 10.57263472290883, "quantity_on_hand": 13, "perms": "rwxrwxrwx", "type": "file", "data": "A widget3 data"}, {"name": "widget1", "path": "/inventory", "id": "widget1", "unit_price": 3.0, "quantity_on_hand": 10, "perms": "rwxrwxrwx", "type": "file", "data": "A widget1 data"}, {"name": "widget2", "path": "/inventory", "id": "widget2", "unit_price": 14.470011665792036, "quantity_on_hand": 30, "perms": "rwxrwxrwx", "type": "file", "data": "A widget2 data"}, {"name": "widget3", "path": "/inventory", "id": "widget3", "unit_price": 10.57263472290883, "quantity_on_hand": 13, "perms": "rwxrwxrwx", "type": "file", "data": "A widget3 data"}, {"name": "widget1", "path": "/inventory", "id": "widget1", "unit_price": 3.0, "quantity_on_hand": 10, "perms": "rwxrwxrwx", "type": "file", "data": "A widget1 data"}, {"name": "widget2", "path": "/inventory", "id": "widget2", "unit_price": 14.470011665792036, "quantity_on_hand": 30, "perms": "rwxrwxrwx", "type": "file", "data": "A widget2 data"}, {"name": "widget3", "path": "/inventory", "id": "widget3", "unit_price": 10.57263472290883, "quantity_on_hand": 13, "perms": "rwxrwxrwx", "type": "file", "data": "A widget3 data"}]
Retrieving Stored Results Later
The query class may retain the results as in the example above. This way, another client can simply request the currently stored results without re-executing the query
from emerge.core.client import Client
client = Client("0.0.0.0", "5558")
# Just retrieve the stored query object
query = client.getobject("/queries/query1", False)
# And access its data like a regular python object
for result in query.results:
print(round(result.total_cost(), 1))
Output
30.0
434.1
137.4
30.0
434.1
137.4
30.0
434.1
137.4
30.0
434.1
137.4
Using Object Proxies
Emerge can proxy an object you created on-the-fly and stored in the filesystem so you can invoke methods on it directly, rather than using the client
object to execute methods.
from emerge.core.client import Client
client = Client("0.0.0.0", "5558")
widget1 = client.proxy("/inventory/widget1")
# Invoke method on server
print(widget1.total_cost())
widgets = client.list("/inventory")
print(widgets)
proxies = [client.proxy(widget) for widget in widgets]
# Executes each method on the server
print([proxy.total_cost() for proxy in proxies])
query = client.proxy("/queries/query1")
# Access member as if local. results is lazy loaded from the server
for result in query.results:
print(result)
print(round(result.total_cost(), 1))
GraphQL queries
emerge
will automatically create the required GraphQL schemas and resolvers for your objects!
Given the following class you create an object and insert into the filesystem.
from dataclasses import dataclass
from emerge.core.client import Client
from emerge.core.objects import EmergeFile
@dataclass
class InventoryItem(EmergeFile):
"""Class for keeping track of an item in inventory."""
unit_price: float = 0.0
quantity_on_hand: int = 0
totalcost: float = 0
foo: str = "FOO"
def run(self):
return "total cost:{}".format(self.total_cost())
def total_cost(self) -> float:
import logging
logging.debug("InventoryItem: total_cost executing")
self.totalcost = self.unit_price * self.quantity_on_hand
return self.totalcost
client = Client("0.0.0.0", "5558")
item = InventoryItem(
id="widget1",
name="widget1",
path="/inventory",
unit_price=3.0,
quantity_on_hand=10,
data="A widget{} data".format(1),
)
client.store(item)
Once emerge
as received and stored your custom object/class it will generate the GraphQL artifacts needed to query it.
Internally, emerge
creates and maintains optimize indicies over your custom object fields dynamically, making it super-fast to execute queries in memory.
Then issue a GraphQL query to find it
$ cat query1.json
query {
InventoryItem(name: "widget1") {
name
id
path
}
}
$ emerge graphql "$(cat query1.json)"
{'InventoryItem': {'name': 'widget1', 'id': 'widget1', 'path': '/inventory'}}
$ cat query3.json
query {
InventoryItemList {
name
id
path
uuid
totalcost
}
}
$ emerge graphql "$(cat query3.json)"
{'InventoryItemList': [{'name': 'widget8', 'id': 'widget8', 'path': '/inventory', 'uuid': '3fd460a1-07a7-4a3a-8804-87ef0c4cee4f', 'totalcost': 0.0},
{'name': 'widget3', 'id': 'widget3', 'path': '/inventory', 'uuid': '4d7d8d2d-2811-4444-a098-ac1c652073f7', 'totalcost': 0.0},
{'name': 'widget9', 'id': 'widget9', 'path': '/inventory', 'uuid': '8b8c4a11-1e01-4a9f-9070-9ea31e18240d', 'totalcost': 0.0},
{'name': 'widget4', 'id': 'widget4', 'path': '/inventory', 'uuid': '8ba02fc6-5d59-4b03-ae2a-2f4807acb879', 'totalcost': 0.0},
{'name': 'query1', 'id': 'query1', 'path': '/queries', 'uuid': 'b2e188fe-e693-4338-a619-71e8d9fa6690', 'totalcost': None},
{'name': 'widget1', 'id': 'widget1', 'path': '/inventory', 'uuid': 'c959c600-9404-4d94-b8d4-135b8e631da1', 'totalcost': 0.0},
{'name': 'query1', 'id': 'query1', 'path': '/queries', 'uuid': 'd7ab0d1f-7bf7-4962-9d34-d92bb3ff7069', 'totalcost': None}
Running a Node
$ emerge --debug node start
2022-08-31 10:48:34,261 : root DEBUG : Debug ON
2022-08-31 10:48:34,322 : root INFO : Starting NodeServer on port: 5558
2022-08-31 10:48:34,322 : root DEBUG : [NodeServer] Setup...
2022-08-31 10:48:34,322 : root DEBUG : [NodeServer] start...
2022-08-31 10:48:34,323 : root DEBUG : Subscribed to NODE on tcp://0.0.0.0:5557
2022-08-31 10:48:34,323 : root DEBUG : get_messages
2022-08-31 10:48:34,323 : root DEBUG : Waiting on message
2022-08-31 10:48:34,324 : root INFO : Z0DBFileSystem setup
2022-08-31 10:48:34,324 : ZODB.BaseStorage DEBUG : create storage emerge.fs
2022-08-31 10:48:34,324 : txn.139737146840640 DEBUG : new transaction
2022-08-31 10:48:34,324 : txn.139737146840640 DEBUG : commit
2022-08-31 10:48:34,325 : root INFO : Z0DBFileSystem start
2022-08-31 10:48:34,325 : zerorpc.events DEBUG : bound to tcp://0.0.0.0:5558 (status=<SocketContext(bind='tcp://0.0.0.0:5558')>)
Using Docker Compose
emerge
comes with a docker compose file to run a broker node and a secondary node.
$ make up
$ make down
$ make clean
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file emergefs-0.0.5.linux-x86_64.tar.gz
.
File metadata
- Download URL: emergefs-0.0.5.linux-x86_64.tar.gz
- Upload date:
- Size: 48.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fcac5976fe7faed05f598eadbb749896c49475fc92d899104e6c8d7fc0ca011e |
|
MD5 | 2b87346b903cf5fce2668523b6157709 |
|
BLAKE2b-256 | 8c97a6e500ce4d0d30c0337c97e276516a08f3814a683d84e40e6d3fddb48dc4 |
File details
Details for the file emergefs-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: emergefs-0.0.5-py3-none-any.whl
- Upload date:
- Size: 26.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a16f0d6952df7348545060db925e67e0408e80153ee7eb21759cb4e6def36fdc |
|
MD5 | 0e98b154373ca709241177be26a7604d |
|
BLAKE2b-256 | f103cc23723d2c2b90407e819f5d04e7c209a4d037b5ef983817a3e2a9a83f20 |