Skip to main content

Formulate human-readable queries and retrieve data from ENTSO-E into pandas.DataFrame format.

Project description

Disclaimer: This library was written to experiment with various concepts. The submodules entsoe_client.ParameterTypes and entsoe_client.Queries are straight forward. To refactor entsoe_client.Parsers, the next steps would be to establish fixtures, standardize flattening of the XML tree and decouple the records from the DataFrame library.

ENTSO-E Client

Formulate readable queries and handle data in Pandas, including an exhaustive set of pre-defined queries.

>>> import requests
>>> from lxml import objectify
>>> from lxml.etree import dump
>>> url = 'https://transparency.entsoe.eu/api?' \
...       'documentType=A81&businessType=A95&psrType=A04&type_MarketAgreement.Type=A01&controlArea_Domain=10YNL----------L' \
...       f'&periodStart=202101010000&periodEnd=202104010000&securityToken={api_key}'
>>> response = requests.Session().get(url=url)
>>> element = objectify.fromstring(response.content)
>>> dump(element)
<Balancing_MarketDocument xmlns="urn:iec62325.351:tc57wg16:451-6:balancingdocument:3:0">
  <mRID>051b91beed574b48b4548214e9001afc</mRID>
  <revisionNumber>1</revisionNumber>
  <type>A81</type>
  <process.processType>A34</process.processType>
  <sender_MarketParticipant.mRID codingScheme="A01">10X1001A1001A450</sender_MarketParticipant.mRID>
  <sender_MarketParticipant.marketRole.type>A32</sender_MarketParticipant.marketRole.type>
  <receiver_MarketParticipant.mRID codingScheme="A01">10X1001A1001A450</receiver_MarketParticipant.mRID>
  <receiver_MarketParticipant.marketRole.type>A33</receiver_MarketParticipant.marketRole.type>
  <createdDateTime>2021-10-04T18:12:43Z</createdDateTime>
  <controlArea_Domain.mRID codingScheme="A01">10YNL----------L</controlArea_Domain.mRID>
  <period.timeInterval>
    <start>2020-12-31T23:00Z</start>
    <end>2021-03-31T22:00Z</end>
  </period.timeInterval>
  <TimeSeries>
    <mRID>1</mRID>
    <businessType>A95</businessType>
    <type_MarketAgreement.type>A01</type_MarketAgreement.type>
    <mktPSRType.psrType>A04</mktPSRType.psrType>
    <flowDirection.direction>A03</flowDirection.direction>
    <quantity_Measure_Unit.name>MAW</quantity_Measure_Unit.name>
    <curveType>A01</curveType>
    <Period>
      <timeInterval>
        <start>2020-12-31T23:00Z</start>
        <end>2021-01-01T23:00Z</end>
      </timeInterval>
      <resolution>PT60M</resolution>
      <Point>
        <position>1</position>
        <quantity>44</quantity>
      </Point>
      <Point>
        <position>2</position>
        <quantity>44</quantity>
[...]

becomes

>>> import entsoe_client as ec
>>> from entsoe_client.ParameterTypes import *
>>> client = ec.Client(api_key)
>>> parser = ec.Parser
>>> query = ec.Query(
...     documentType=DocumentType("Contracted reserves"),
...     psrType=PsrType("Generation"),
...     businessType=BusinessType("Frequency containment reserve"),
...     controlArea_Domain=Area("NL"),
...     type_MarketAgreementType=MarketAgreementType("Daily"),
...     periodStart="2021-01-01T00:00",
...     periodEnd="2021-04-01T00:00"
... )
>>> response = client(query)
>>> df = parser.parse(response)
>>> df.iloc[:,:3].head()
                          position quantity Period.timeInterval.start...
2020-12-31 23:00:00+00:00        1       44         2020-12-31T23:00Z
2021-01-01 00:00:00+00:00        2       44         2020-12-31T23:00Z
2021-01-01 01:00:00+00:00        3       44         2020-12-31T23:00Z
2021-01-01 02:00:00+00:00        4       44         2020-12-31T23:00Z
2021-01-01 03:00:00+00:00        5       44         2020-12-31T23:00Z
...

predefined queries are subset of the generic Query class, covering all examples of the ENTSO-E API guide.

>>> predefined_query = ec.Queries.Balancing.AmountOfBalancingReservesUnderContract(
...     controlArea_Domain=Area("NL"),
...     type_MarketAgreementType=MarketAgreementType("Daily"),
...     psrType=PsrType("Generation"),
...     periodStart="2021-01-01T00:00",
...     periodEnd="2021-04-01T00:00"
... )
...
>>> predefined_query() == query()
True

ENTSO-E Client enables straight-forward access to all of the data at ENTSO-E Transparency Platform.
  • Query templates abstract the API specifics through Enumerated types.

  • Parse responses into Pandas DataFrames without loss of any information.

The separation of Queries, Client and Parser with their hierarchical abstractions keep the package extensible and maintainable. A pipeline from Query to DataFrame is trivial, preserving the ability to customize steps in between.
The implementation relies primarily on the Transparency Platform restful API - user guide. The Manual of Procedures (MoP) documents provide further insight on the business requirements specification. Further information can be found in the Electronic Data Interchange (EDI) Library.

Main contributions

  • Exhaustive List of ParameterTypes.

    These allow mapping between natural language and the codes required for GET requests, e.g. DocumentType.A85 == DocumentType("Imbalance price"). This feature allows keeping track of queries without jumping between documents or adding comments.

  • Exhaustive List of Pre-defined Queries from ENTSO-E API Guide.

    ENTSO-E API Guide is a minial set for any API connector to implement and reflects all dashboards on ENTSO-E Transparency Platform.

  • Parsers

    Response Documents come in XML schema which can be parsed into pandas DataFrames.

    Implemented: GL_MarketDocuments, TransmissionNetwork_MarketDocuments, Publication_MarketDocuments and Balancing_MarketDocuments.

    Missing: Outages, Congestion Management and System Operations.

Nevertheless, ENTSO-E Client seeks to be minimal to go from Query to DataFrame and requires domain- knowledge on how to formulate queries and interpret various columns of a parsed response.


ENTSO-E relies on many codes (Type) to map to desired queries. Types are encoded in Enum classes with a .help() function to list the all. They can be addressed through Type[code] or Type(string), making interaction easy. HTTP requests and responses usually require the code, whereas we want to formulate the query as a human-readable string.

from entsoe_client import Queries
from entsoe_client.ParameterTypes import *

Queries.Transmission.CapacityAllocatedOutsideEU(
        out_Domain=Area('SK'),
        in_Domain=Area('UA_BEI'),
        marketAgreementType=MarketAgreementType('Daily'), # Original code: A01
        auctionType=AuctionType('Explicit'), # Original code: A02
        auctionCategory=AuctionCategory('Hourly'), # Original code: A04
        classificationSequence_AttributeInstanceComponent_Position=1,
        periodStart=201601012300,
        periodEnd=201601022300)
>>> ParameterTypes.DocumentType['A25'] == ParameterTypes.DocumentType('Allocation result document')
True
>>> ec.ParameterTypes.DocumentType.help()
--- DocumentType ---
API_PARAMETER: DESCRIPTION
[...]
A25: Allocation result document
A71: Generation forecast
A72: Reservoir filling information
A73: Actual generation
A85: Imbalance prices
A86: Imbalance volume
[...]
API_PARAMETER: DESCRIPTION
--- DocumentType ---
>>> ec.ParameterTypes.BusinessType.help()
--- BusinessType ---
API_PARAMETER: DESCRIPTION
[...]
A25: General Capacity Information
A29: Already allocated capacity(AAC)
A97: Manual frequency restoration reserve
B08: Total nominated capacity
C22: Shared Balancing Reserve Capacity
C24: Actual reserve capacity
[...]
API_PARAMETER: DESCRIPTION
--- BusinessType ---
#shortened from sample_plot.py
import entsoe_client as ec
from settings import api_key

# Instantiate Client, Parser and Query.
client = ec.Client(api_key)
parser = ec.Parser()
query = ec.Queries.Generation.AggregatedGenerationPerType(
    in_Domain=ec.ParameterTypes.Area('DE_LU'),
    periodStart=202109050200,
    periodEnd=202109070200)

# Extract data.
response = client(query)
df = parser(response)
[...]

# Transform data.
production = df[~consumption_mask][['quantity', 'TimeSeries.MktPSRType.psrType']]
## PsrType, e.g. `B01` := `Biomass`.
production['GenerationType'] = production['TimeSeries.MktPSRType.psrType']. \
    apply(lambda x: ParameterTypes.PsrType[x].value) # Map ENTSO-E PsrTypes into human-readable string.
production_by_type = pd.pivot_table(production,
                                    index=production.index,
                                    columns='GenerationType',
                                    values='quantity')
[...]
# Plot.
production_by_type.plot.bar(title="Production by Generation Type in DE-LU",
                            xlabel="UTC",
                            ylabel='MWh',
                            ax=ax,
                            **plot_params)
[...]
./sample_plot.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

entsoe_client-0.2.3.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

entsoe_client-0.2.3-py3-none-any.whl (37.8 kB view details)

Uploaded Python 3

File details

Details for the file entsoe_client-0.2.3.tar.gz.

File metadata

  • Download URL: entsoe_client-0.2.3.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.17 Linux/6.5.12-300.fc39.x86_64

File hashes

Hashes for entsoe_client-0.2.3.tar.gz
Algorithm Hash digest
SHA256 008cdb666cec23af8e8f3b98d7b7a47918c74f0ac46aada05631a18d305fdef0
MD5 dc64c2fad049edf0edd69d6f1bb84792
BLAKE2b-256 d986f68a3d57fa273d8b4fef237ea10e67a4217c4e65727edf5b3e7198ef8d2f

See more details on using hashes here.

File details

Details for the file entsoe_client-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: entsoe_client-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 37.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.17 Linux/6.5.12-300.fc39.x86_64

File hashes

Hashes for entsoe_client-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0dfd8f9999927695adfcbfe1fdf5ae60f880879834d2a6f38f3764571d2a9519
MD5 ea3db2e05490dee6365ad4dc8c126e4d
BLAKE2b-256 f8cefd7e1872febbf62f0873df74db3a9add52a00f6103ec9c6a937e2c4e4f96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page