Skip to main content

Tools for working with EPREM simulation runs

Project description

EPREM(py)

Tools for working with EPREM simulation runs

Installation

$ pip install eprempy

Usage

Before getting started in earnest with eprempy, one simple task you can perform to make sure everything is installed is to print the version number.

>>> import eprempy
>>> print(eprempy.__version__)

You can also print the version number via the package command-line interface (CLI)

$ python -m eprempy --version

The value printed will depend on which version you have installed.

Dataset interfaces

The examples below assume a working knowledge of EPREM — essentially, they assume that you have successfully run EPREM and have access to both the runtime configuration file and the output files.

Most users will begin by creating an interface to a full dataset, or to a single stream or point observer. The syntax is similar among all three cases.

You may create an interface to a full dataset by providing a path to the directory containing output from an EPREM simulation run (source), the name of the runtime configuration file used to initialize the simulation run (config), and the metric system in which to observe physical quantities (system).

from eprempy import eprem

dataset = eprem.dataset(source='/path/to/my/eprem/run', config='eprem.cfg', system='mks')

All parameters have default values

  • The default source is the current directory.
  • The default config is any file called eprem_input_file, or a file ending in .cfg, .ini, or .in.
  • The default system is 'mks' — options are 'mks' or 'cgs' (case-insensitive).

Each dataset has the following properties

  • directory: the full path to the relevant EPREM output directory.
  • config: the full path to the runtime configuration file used to initialize the EPREM simulation run.
  • system: an instance of eprempy.metric.System representing an observer's metric system
  • observers: all observers in the dataset, keyed by ID.
  • streams: all stream observers in the dataset, keyed by ID.
  • points: all point observers in the dataset, keyed by ID.
  • parameters: an interface to EPREM runtime parameter values.

Observer interfaces

You may directly create an individual observer by providing its ID (e.g., stream number or name), as well as the same arguments used to create a dataset. The observer ID must be the first argument and is required.

from eprempy import eprem

stream = eprem.stream(4, source='/path/to/my/eprem/run', config='eprem.cfg', system='mks')
point = eprem.point(1, source='/path/to/my/eprem/run', config='eprem.cfg', system='mks')

A stream-observer ID is alway an integer. A point-observer ID may be a string or an integer, in order to accommodate the possibility of named point observers (e.g., 'earth' or 'PSP') in EPREM.

Therefore, the following invokations are equivalent to those above, as long as you're working in the simulation output directory and the simulation configuration file has a standard name.

from eprempy import eprem

dataset = eprem.dataset()
stream = eprem.stream(4)
point = eprem.point(1)

Each observer has the following properties

  • source: the full path to an observer's data file.
  • system: an instance of eprempy.metric.System representing an observer's metric system.
  • times: the observer's time coordinates.
  • species: the available particle species.

Observable quantities

Every observer provides a key-based interface (i.e., a mapping) to observable quantities. Users may request a known observable quantity from an observer by passing a valid alias for the observable via bracket syntax. For example, any of the following commands will return the observable quantity representing particle flux

stream['flux']
stream['Flux']
stream['j']
stream['J']

Each observable quantity knows its unit and its subscriptable dimensions.

>>> stream = eprem.stream(4, system='mks')
>>> stream['flux']
Quantity(unit='J^-1 s^-1 sr^-1 m^-2', dimensions={'time', 'shell', 'species', 'energy'})
>>> stream = eprem.stream(4, system='cgs')
>>> stream['flux']
Quantity(unit='erg^-1 s^-1 sr^-1 cm^-2', dimensions={'time', 'shell', 'species', 'energy'})

An observable quantity has unit and dimensions properties. Using the MKS example,

>>> flux = stream['flux']
>>> flux.unit
Unit('J^-1 s^-1 sr^-1 m^-2')
>>> flux.dimensions
Dimensions({'time', 'shell', 'species', 'energy'})

It is possible to change the unit of an observable quantity via the .withunit method.

>>> stream['flux'].withunit('1 / (cm^2 s sr MeV/nuc)')
Quantity(unit='nuc MeV^-1 s^-1 sr^-1 cm^-2', dimensions={'time', 'shell', 'species', 'energy'})

The full list of observable quantities, with registered aliases, is

  • 'phiOffset'
  • 't' = 'times' = 'time'
  • 'shells' = 'shell'
  • 'pitch-angle cosines' = 'mu' = 'pitch-angle cosine' = 'pitch-angle' = 'pitch angles' = 'pitch angle' = 'pitch-angles'
  • 'm' = 'mass'
  • 'q' = 'charge'
  • 'energy' = 'egrid' = 'E' = 'energies'
  • 'v' = 'vgrid' = 'speed'
  • 'radius' = 'R' = 'r'
  • 'T' = 'theta'
  • 'phi' = 'P'
  • 'Br' = 'br'
  • 'bt' = 'btheta' = 'Btheta' = 'Bt'
  • 'Bphi' = 'Bp' = 'bphi' = 'bp'
  • 'ur' = 'vr' = 'Vr' = 'Ur'
  • 'Ut' = 'utheta' = 'Utheta' = 'Vtheta' = 'Vt' = 'ut'
  • 'uphi' = 'up' = 'Vp' = 'Vphi' = 'Up' = 'Uphi'
  • 'rho' = 'Rho'
  • 'Dist' = 'dist' = 'f'
  • 'Flux' = 'J' = 'j(E)' = 'j' = 'J(E)' = 'flux'
  • 'X' = 'x'
  • 'y' = 'Y'
  • 'Z' = 'z'
  • 'bmag' = 'b_mag' = 'b mag' = '|b|' = '|B|' = 'b' = 'B'
  • 'u mag' = 'umag' = '|U|' = 'U' = 'u_mag' = 'u' = '|u|'
  • 'Upara' = 'u_para' = 'upara'
  • 'u_perp' = 'Uperp' = 'uperp'
  • 'angle' = 'flow_angle' = 'flow angle'
  • 'div_u' = 'divu' = 'div(u)' = 'div(U)' = 'divU' = 'div u' = 'div U'
  • 'Rg' = 'rigidity' = 'R_g'
  • 'mean_free_path' = 'mean free path' = 'mfp'
  • 'ar' = 'acceleration rate' = 'acceleration_rate'
  • 'energy_density' = 'energy density'
  • 'average_energy' = 'average energy'
  • 'fluence'
  • 'integral flux' = 'integral_flux' = 'intflux'

Observations

Users may observe an observable quantity via standard subscription syntax, such as

flux[0, 0, 0, 0]
flux[0, ...]
flux[:, 0, ...]
flux[:]

Users may also observe an observable quantity via physical subscription syntax, such as

time = 1.0, 2.0, 'day'
radius = 0.5, 'au'
species = 'H+'
energy = 1.0, 10.0, 100.0, 'MeV'
flux[time, radius, species, energy]

or, more compactly,

flux[(1.0, 2.0, 'day'), (0.5, 'au'), 'H+', (1.0, 10.0, 100.0, 'MeV')]

Note that physical subscription syntax requires a tuple to express an index with one or more value(s) and a unit.

Each observation inherits its unit from the observable quantity at the time of observation, and it has its own unit property and withunit method. In place of the dimensions property, each observation has an axes property that contains information about the specific axis types and their corresponding values.

Changing an observation's unit self-consistently scales the observed values. Attempting to convert an observable quantity or an observation to a physically inconsistent unit (e.g., converting 'm / s' to 'kg / erg') raises a ValueError.

You may directly convert any observation to a numpy.ndarray

import numpy

numpy.array(flux[0, 0, 0, 0])
numpy.array(flux[:])

You may also directly convert any observable quantity to a numpy.ndarray

numpy.array(flux)

Doing so is essentially a shortcut for converting the full observation.

Runtime parameters

Accessing a runtime parameter value via the dataset interface's parameters property returns a Variable for physical quantities — those with one or more value(s) and a unit — and a built-in type (e.g., integer or string) for all other quantities.

The full list of parameters, with registered aliases, is

  • 'FailModeDump'
  • 'adiabaticChangeAlg'
  • 'adiabaticFocusAlg'
  • 'aziSunStart'
  • 'boundaryFunctAmplitude' = 'J0'
  • 'boundaryFunctBeta' = 'beta'
  • 'E0' = 'boundaryFunctEcutoff'
  • 'reference energy' = 'boundaryFunctEr' = 'Er'
  • 'gamma' = 'boundaryFunctGamma'
  • 'reference radius' = 'R0' = 'boundaryFunctR0' = 'r0'
  • 'boundaryFunctXi' = 'xi'
  • 'boundaryFunctionInitDomain'
  • 'charge'
  • 'checkSeedPopulation'
  • 'dsh_hel_min'
  • 'dsh_min'
  • 'dumpFreq'
  • 'dumpOnAbort'
  • 'eMax'
  • 'eMin'
  • 'epCalcStartTime'
  • 'epEquilibriumCalcDuration'
  • 'epremDomain'
  • 'epremDomainOutputTime'
  • 'fieldAligned'
  • 'flowMag'
  • 'fluxLimiter'
  • 'focusingLimit'
  • 'gammaEhigh'
  • 'gammaElow'
  • 'idealShock'
  • 'idealShockFalloff'
  • 'idealShockInitTime'
  • 'idealShockJump'
  • 'idealShockPhi'
  • 'idealShockPhiWidth'
  • 'idealShockScale'
  • 'idealShockScaleLength'
  • 'idealShockSharpness'
  • 'idealShockSpeed'
  • 'idealShockTheta'
  • 'idealShockThetaWidth'
  • 'idealShockWidth'
  • 'idw_p'
  • 'kper/kpar' = 'kperxkpar' = 'kper / kpar' = 'kper_kpar'
  • 'lambda0' = 'lam0' = 'lamo'
  • 'mass'
  • 'mfpRadialPower' = 'mfp_radial_power'
  • 'mhdBAu'
  • 'mhdBConvert'
  • 'mhdCouple'
  • 'mhdCoupledTime'
  • 'mhdDensityAu'
  • 'mhdDigits'
  • 'mhdDirectory'
  • 'mhdInitFromOuterBoundary'
  • 'mhdInitMonteCarlo'
  • 'mhdInitRadius'
  • 'mhdInitTimeStep'
  • 'mhdNumFiles'
  • 'mhdRadialMax'
  • 'mhdRadialMin'
  • 'mhdRhoConvert'
  • 'mhdRotateSolution'
  • 'mhdStartTime'
  • 'mhdSteadyState'
  • 'mhdTimeConvert'
  • 'mhdVConvert'
  • 'mhdVmin'
  • 'minInjectionEnergy'
  • 'numColumnsPerFace'
  • 'numEnergySteps'
  • 'numEpSteps'
  • 'numMuSteps'
  • 'numNodesPerStream'
  • 'numObservers'
  • 'numRowsPerFace'
  • 'numSpecies'
  • 'obsPhi'
  • 'obsR'
  • 'obsTheta'
  • 'omegaSun'
  • 'outputFloat'
  • 'outputRestart'
  • 'parallelFlow'
  • 'pointObserverOutput'
  • 'pointObserverOutputTime'
  • 'preEruptionDuration'
  • 'rScale'
  • 'rigidityPower' = 'rigidity_power'
  • 'saveRestartFile'
  • 'seedFunctionTest'
  • 'shockDetectPercent'
  • 'shockInjectionFactor'
  • 'shockSolver'
  • 'simStartTime'
  • 'simStopTime'
  • 'streamFluxOutput'
  • 'streamFluxOutputTime'
  • 'streamSpawnLocAzi'
  • 'streamSpawnLocZen'
  • 'subTimeCouple'
  • 'tDel'
  • 'unifiedOutput'
  • 'unifiedOutputTime'
  • 'unstructuredDomain'
  • 'unstructuredDomainOutputTime'
  • 'useAdiabaticChange'
  • 'useAdiabaticFocus'
  • 'useBoundaryFunction'
  • 'useDegrees'
  • 'useDrift'
  • 'useEPBoundary'
  • 'useManualStreamSpawnLoc'
  • 'useMhdSteadyStateDt'
  • 'useParallelDiffusion'
  • 'useShellDiffusion'
  • 'useStochastic'
  • 'warningsFile'

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

eprempy was created by Matt Young. It is licensed under the terms of the BSD 3-Clause license.

Credits

eprempy was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eprempy-0.8.0.tar.gz (199.7 kB view details)

Uploaded Source

Built Distribution

eprempy-0.8.0-py3-none-any.whl (238.0 kB view details)

Uploaded Python 3

File details

Details for the file eprempy-0.8.0.tar.gz.

File metadata

  • Download URL: eprempy-0.8.0.tar.gz
  • Upload date:
  • Size: 199.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.8.0-45-generic

File hashes

Hashes for eprempy-0.8.0.tar.gz
Algorithm Hash digest
SHA256 cf5d76b598471980c3353709a2d115ae5e2f907f4dd16750737965bd70bfabf4
MD5 63d07e94ca0cb7bffd57f5ae6f8eb243
BLAKE2b-256 3aa38ba7c9cb1f8b8fdb3e4746af42e3482af131f6322af9749c1a5310f19f37

See more details on using hashes here.

File details

Details for the file eprempy-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: eprempy-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 238.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.8.0-45-generic

File hashes

Hashes for eprempy-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 171455ea7a588b969d9af6457afc9d55594e667be95fb4ee2c40e722c20c20de
MD5 ffebf8c44e9abe80dd1e7e71764b45fc
BLAKE2b-256 9b482a0f757cfe5020af6a8a0caabe4155d53a66d2f869e65af757e8c1b5297e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page