Skip to main content

This package provides "rough path" tools for analysing vector time series.

Project description

esig

The Python package esig provides a toolset (previously called sigtools) for transforming vector time series in stream space to signatures in effect space. It is based on the libalgebra C++ library.

build

Installation

esig can be installed from a wheel using pip in most cases. The wheels contain all of the dependencies and thus make it easy to use the package. For example, on Python 3.8, you can install esig using the following console command:

python3.8 -m pip install esig

(You may need to tweak this command based on your platform, Python version, and preferences.)

esig can be compiled from source, but this is not advised. More information can be found in the documentation.

Basic usage

esig provides a collection of basic functions for computing the signature of a data stream in the form of a Numpy array. The stream2sig function computes the signature of a data stream up to a specific depth. For example, we can create a very simple data stream and compute its signature as follows.

import numpy as np
import esig

stream = np.array([
    [1.0, 1.0],
    [3.0, 4.0],
    [5.0, 2.0],
    [8.0, 6.0]
])
depth = 2

sig = esig.stream2sig(stream, depth) # compute the signature
print(sig) # prints "[1.0, 7.0, 5.0, 24.5, 19.0, 16.0, 12.5]"

The signature is returned as a flat Numpy array that contains the terms of the signature - which is fundamentally a higher dimensional tensor - in degree order. This first element is always 1.0, which corresponds to the empty tensor key. In this case the dimension is 2 (specified by the number of columns in the stream array), and so the next two elements are the signature elements corresponding to the words (1) and (2). These are the depth 1 words. The final 4 elements are the depth 2 words (1,1), (1,2), (2,1), and (2,2). esig provides the sigkeys function to generate these labels for you based on the parameters of the data.

width = 2
sig_keys = esig.sigkeys(width, depth)
print(sig_keys) # prints " () (1) (2) (1,1) (1,2) (2,1) (2,2)"

To compute the log signature of a data stream you use the stream2logsig function. This works in a similar manner to the stream2sig function in that it takes a Numpy array (the data) and a depth and returns a flat Numpy array containing the elements of the log signature in degree order.

log_sig = esig.stream2logsig(stream, depth)
print(log_sig) # prints "[7.  5.  1.5]"

Here the first two elements are the depth 1 Lie elements (corresponding to the letters 1 and 2) and the third element is the coefficient of the Hall basis element [1,2]. Again, esig provides a utility function logsigkeys for getting the keys that correspond to the coefficients in order for the log signature.

log_sig_keys = esig.logsigkeys(width, depth)
print(log_sig_keys) # prints " 1 2 [1,2]"

There are two additional utility functions for computing the size of a signature or logsignature with a specified dimension and depth: sigdim and logsigdim. These functions return an integer that is the dimension of the Numpy array returned from the stream2sig or stream2logsig functions, respectively.

esig also provides another function recombine, which performs a reduction of a measure defined on a large ensemble in a way so that the resulting measure has the same total mass, but is supported on a (relatively) small subset of the original ensemble. In particuar, the expected value over the ensemble with respect to the new measure agrees with that of the original measure.

Using alternative computation backends

esig uses libalgebra as a backend for computing signatures and log signatures by default. However, the computation backend can be changed to instead use an alternative library for computing signatures and log signatures. This is achieved by using the set_backend function in esig and providing the name of the backed that you wish to use. For example, we can switch to using the iisignature package as a backend by first installing the iisignature package and then using the command

import esig
esig.set_backend("iisignature")

To make it easier to install and use iisignature as a backend, it is offered as an optional extra when installing esig:

python3.8 -m pip install esig[iisignature]

You can also define your own backend for performing calculations by creating a class derived from esig.backends.BackendBase, implementing the methods describe_path (log_signature) and signature and related methods.

##Changelog 0.9.8.2 Hotfix 2 - Fixed the range of configurations available. - Fixed MANIFEST.in, now reflects the updated project structure.

0.9.8.1 Hotfix - Fixed problem caused by reading data in from F-contiugous array - Fixed issue with readme on PyPI.

0.9.8 - Added support for Python3.10. - Updated build system to use cibuildwheel in Github actions. - Updated libalgebra to benefit from improvements to performance - Deprecated tosig submodule. The functions formerly from this module are available via the top-level esig module. The tosig module will be removed in version 1.0. - Removed builds on 32-bit Linux for Python 3.8+. There is no Numpy wheels on this architecture for these versions of Python.

0.9.0 - Switched Linux support to manylinux2010 - Support for 32-bit platforms

0.8.2 - Added builds for Python3.9 - Updated README

0.8.1 - Minor fixes to build routine

0.8.0 - Added Python interface in the package root to computation backends - Added iisignature backend to allow computation of signatures using the iisignature package - Added support for computing depth 1 signatures and logsignatures - Added new unit tests. - Made some changes to the build script - Added Python 3.9 build target

0.7.4 - Fixed message displayed for Python versions below 3.8 when importing esig

0.7.3 - Added recombine function

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

esig-0.9.8.2.tar.gz (153.7 kB view details)

Uploaded Source

Built Distributions

esig-0.9.8.2-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

esig-0.9.8.2-cp310-cp310-win32.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86

esig-0.9.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

esig-0.9.8.2-cp310-cp310-macosx_10_11_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.11+ x86-64

esig-0.9.8.2-cp39-cp39-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

esig-0.9.8.2-cp39-cp39-win32.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86

esig-0.9.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

esig-0.9.8.2-cp39-cp39-macosx_10_11_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.11+ x86-64

esig-0.9.8.2-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

esig-0.9.8.2-cp38-cp38-win32.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86

esig-0.9.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

esig-0.9.8.2-cp38-cp38-macosx_10_11_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.11+ x86-64

esig-0.9.8.2-cp37-cp37m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

esig-0.9.8.2-cp37-cp37m-win32.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86

esig-0.9.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

esig-0.9.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

esig-0.9.8.2-cp37-cp37m-macosx_10_11_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.7m macOS 10.11+ x86-64

esig-0.9.8.2-cp36-cp36m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

esig-0.9.8.2-cp36-cp36m-win32.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86

esig-0.9.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

esig-0.9.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

esig-0.9.8.2-cp36-cp36m-macosx_10_11_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

File details

Details for the file esig-0.9.8.2.tar.gz.

File metadata

  • Download URL: esig-0.9.8.2.tar.gz
  • Upload date:
  • Size: 153.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2.tar.gz
Algorithm Hash digest
SHA256 d6a46ad156d242dab405e1d14777644490dfedf77f4cc0698c6e7dd6e22b28fc
MD5 df305ee12c56f6a4a74fe3e9155641d9
BLAKE2b-256 792875f92e92e761e1931481c8eab9c7e978ef3248dfebc965970bc4cf61da65

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8d93dff5b1422f7b430569a606fc406485e71b3344ac62186846bbf2aeab86e1
MD5 fe6a5ad4148724e7ea6da0402ecc8f76
BLAKE2b-256 e22d31eb3844a970ead45474c7ac7702a24c01145a35e7ad06ac4ec4e69eceac

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3da7badd65a78c5d073451a4a9d78d145e64239e87620cd506bd8f7819c6b35e
MD5 18bcce4d63c517367b312f97553613e4
BLAKE2b-256 25d9ba2959b7a8bf2d21cdfc29a5344b6899e43961f4b26c0b9972d5e0a4cdd7

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7e74c1b855fe4ec4781e0a4c1cbd0e41cb966304c5400e3dea79d6aed79b525
MD5 5f54ec24bebfbe51acc98255c6153ce2
BLAKE2b-256 dd52d69a3e85af08df9e8c65a7ee0847d2c37a48bd2ead55e5648c3619783c4f

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp310-cp310-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp310-cp310-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 3caee805d3d4c468bc1cefbe5554716bab83bdca82d38e43d500add90d64e46b
MD5 27475b87ff17e1e92a74a4dadd5cfff8
BLAKE2b-256 d20f10c0f5e3d22e99540e00a613ca3d5984cfe2b48783ad85ed1ee2c17722b8

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 320e586d4fadd1928f045c84443e313496af65510cbe6ab1325d3ebc57a67f3f
MD5 21169877df79c028590bc5271e23d4cc
BLAKE2b-256 4092775a0776687a3a5a6db64e06cd2a667d5ed43321df15450f92a59bc31e65

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b69369d20c2a6b0d4e24ad7727545ee28e5a7985e7b707dced67237ba4587a7b
MD5 87300a828053794c1f0d43976711c3a2
BLAKE2b-256 e3663c35abff7b42deb9a926517d11dd3f2109b5de45236ee2a9cdc9cba9e253

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cc59a16b88f19e8768ded53f812bc3ec2cf48e4d3ae5f01df15f2f2151fda38
MD5 158a9a139d328f97fb93049739f616b1
BLAKE2b-256 776ba6a502ecac248a12f033b7f274f0c3902082e7080d5f000a70d5e707b8e5

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp39-cp39-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp39-cp39-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 3d2793c547bc56f6f9fffcf740cea4fadc08f331c0302be8c0edd08d8b6fc733
MD5 c3fc793966f3fbd5943b5c74b437e4b4
BLAKE2b-256 a8bdd4369a6cb14808aa2db49887e8413280599bb6b1126fc8c8fa2a86a016e4

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 735dcd14ae604a8fd1d9b433fe1615bccd7953ca6fc9b372c10a370e164da18f
MD5 645cbb4e84f76aae370ae6ad2913a7e2
BLAKE2b-256 abfcb1f6a2f9953b746db213c048403a1023c5c8a385159a97af2cf3d77a5149

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4305053963f6ddd684ee7ce6147ac24d64c4e1bdfb30920ef379b76fa80382d9
MD5 8801a5e5781c4c5351c522e9d74b746d
BLAKE2b-256 5d8cf1a270fe63f7dd770aeb86a3b154868ce48cdb5ab7156f929a794dee128e

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77b304be42679cecf9945d7084f7c078c3d28db02871d3ab39580fb3cb53a9e2
MD5 2369803f5a24896001ad0199c10cb910
BLAKE2b-256 e3a71713815a566d4cee5495c78c0e0309a52db13f7d72e7e74a7ad36e055e60

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp38-cp38-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp38-cp38-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 067ac44a85d178af5c2271db7a55278fe8cbfc1c865a9912a7efcc1e1de53b9a
MD5 5e9bd3e47aebf7e22eae2f616044e3e6
BLAKE2b-256 1490c28c626ba5f852a9aae4c955cde6e77be89c77e09e4d9845f8b039ef35f9

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7dc5b01755e132864f05956441d67a7d805232767434fa2b68fb9757b8f350b4
MD5 70cb9f49423253d5ed5373fe2d7bf828
BLAKE2b-256 8e4651e7eae564259b7bcf24ea7424ba3b0b0415cb0dcffa91752af94fc18a05

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d7fa3bf57c8c22e63bf89107341d26649d55d7c97f21ecfe3cd08f04657c4694
MD5 2cbb708a7e18a99053e4e84a3355f0ac
BLAKE2b-256 9002a9c641300f0b49454a7c3f10464bba0d451a6a16b7e327a82931640d0b79

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79dfed23fca5f2dda614e30143d7e7ecd4b14d9d53b6db61fa573a3dc11834db
MD5 ce452444b7e954a1994ed8d4d4b284f6
BLAKE2b-256 3874e5a0c42920e3078c4be63cc500e8ddbf29d0703ba5edda3b82d8d89be857

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd19e2c2c653204e862a29053f7263bf712361503a4b5913220e93184a0fffb7
MD5 a153ceeab4b6f23dbd478dd5cef8e798
BLAKE2b-256 6ab3c527e26de68238127a200f8d40a622e207c3b1b72a94f5d8d8b1743ff27f

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp37-cp37m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp37-cp37m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 11551f0a400d80c480de2a009bb9a54b5e10d8679d49940864cfc87839931b4a
MD5 416e8ab8cfd42d337e31058d6fe02aa3
BLAKE2b-256 7d9ab1c82cf5b31eeb8939525e64316436d91dd018ed5e78ef72fc2056fa2616

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a96476806e2c35b8bb25d9228706525e307e44166159fa445a0498fb8feef656
MD5 825285061e11205a89e436131377dca5
BLAKE2b-256 b74e78768530c5836371f546a2f719cce30d7d152115474f49daf199c2bbecdd

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: esig-0.9.8.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for esig-0.9.8.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3f7f281014959a272007900259f19ba619b400657d4b918a9d4babc90197b440
MD5 06088d2c37aec13cab05cfbef4ffa949
BLAKE2b-256 026721db99d63761afbb7801c45ea53f7c18909a6aa4806fdbebe30142b04e86

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 948e350efa91252a5142575c476c3adaae73a6acad0900ce75e15b71242af24b
MD5 8decc2d1fefec19574bc1951b43ee3c0
BLAKE2b-256 3181d1ed4dbb6478b63967c70b30a724e13f6ba506af07fb5ce2916e660d263a

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 780f5af0ed9f217a4a8ebc3e47d2c9c5227977dd3163faad326ed7c7f754a2c6
MD5 b68890c07bd20581ca14f97927eda354
BLAKE2b-256 4178061df1e0d37946a2546cda687de6510f6964013ed66e8a23b4ded3a5a0da

See more details on using hashes here.

File details

Details for the file esig-0.9.8.2-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for esig-0.9.8.2-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 530fe18fc247fd9d5e290b3cd81fee96e52d98c3e85dce42fcf948619bf91cc3
MD5 ef47d08a617c1e2ea204e0d3105dbe81
BLAKE2b-256 54658d627ea03a670322edf3430d363c6714151ca453569021452f42eda799c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page