Skip to main content

Library for audio and music analysis, description and synthesis, with TensorFlow support

Project description

Essentia is an open-source C++ library with Python bindings for audio analysis and audio-based music information retrieval. It contains an extensive collection of algorithms, including audio input/output functionality, standard digital signal processing blocks, statistical characterization of data, a large variety of spectral, temporal, tonal, and high-level music descriptors, and tools for inference with deep learning models. Designed with a focus on optimization in terms of robustness, computational speed, low memory usage, as well as flexibility, it is efficient for many industrial applications and allows fast prototyping and setting up research experiments very rapidly.

Website: https://essentia.upf.edu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

essentia_tensorflow-2.1b6.dev1032-cp311-cp311-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

essentia_tensorflow-2.1b6.dev1032-cp310-cp310-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

essentia_tensorflow-2.1b6.dev1032-cp39-cp39-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

essentia_tensorflow-2.1b6.dev1032-cp38-cp38-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

essentia_tensorflow-2.1b6.dev1032-cp37-cp37m-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

essentia_tensorflow-2.1b6.dev1032-cp36-cp36m-macosx_10_9_x86_64.whl (119.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0037b4c408234fe9858f9467abb1118d178ad2d128c5bf488beadf501de98084
MD5 11d141bf080f1de841caac120a5c087e
BLAKE2b-256 7fae8ec8871d002110065c3b29e4cfa488b0677745c8247c139b14b969256617

See more details on using hashes here.

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c134fa07ffa37fd9cfcc1fdde22c688f196f5ea725bf9a0fe7193616d4ce798c
MD5 a2ebee4585fc85dae45bf5933284f7bd
BLAKE2b-256 29934113b64dda8b2be098b03046ca6c7799847cac15156c45f804f139bb93c7

See more details on using hashes here.

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5573486ac8485aa757bb2573463518b993fa95b815809e170d730482656e4484
MD5 38b50266948f9ef55081b65f8ab75e75
BLAKE2b-256 cce417a9994ebbdcc72ab2bbf0ac37453abfef486b6e715e66e39a9f7e8be017

See more details on using hashes here.

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dab89e08ae9face4e66a36ab7699c64bccc2f77a4613f101fd51bfea831b4c89
MD5 517595550cde9f818d281abc45c9237d
BLAKE2b-256 c657950a746f597a33bbc0e04eac37853e4e340d488d3ac1497de0dc3a4a387c

See more details on using hashes here.

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1542ff4d08754a6eda552510a9087965e15e1034fac413bbc813eab62e44df4
MD5 e2f2ce9f65efc543dc900d64a50ca7c5
BLAKE2b-256 309bc5d3209ee77fb01dd1e6649a3d684a80b443864ee32c4f3c825088d03942

See more details on using hashes here.

File details

Details for the file essentia_tensorflow-2.1b6.dev1032-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for essentia_tensorflow-2.1b6.dev1032-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72168fb0189f050272760d32b1632159e4e718de8d7bdd30252b3b988c0cefca
MD5 609403a2179f6d1c8a82846d94f266bc
BLAKE2b-256 4aaebd67c01bd01f8696c5cd1ccbd108c54e401ecf0c06eef632ebd379fd514e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page