Skip to main content

No project description provided

Project description

Evo Researcher

Overview

This project is aimed to be an iteration on top of Autonolas AI Mechs's research process aimed towards making informed predictions.

It contains two primary features:

  • An information research function
  • An information grading function

Additionally, Mech's predict capability has been ported into a function that can also be independently run from this repo.

Below, there's a high level explanation of their implementations, respectively.

Research Function

The research function takes a question, like "Will Twitter implement a new misinformation policy before the 2024 elections?" and will then:

  1. Generate n web search queries
  2. Re-rank the queries using an LLM call, and then select the most relevant ones
  3. Search the web for each query, using Tavily
  4. Scrape and sanitize the content of each result's website
  5. Use Langchain's RecursiveCharacterTextSplitter to split the content of all pages into chunks.
  6. Create embeddings of all chunks, and store the source of each as metadata
  7. Iterate over the queries selected on step 2. And for each one of them, vector search for the most relevant embeddings for each.
  8. Aggregate the chunks from the previous steps and prepare a report.

Grading Function

For the implmentation of this function, the information quality criteria were selected from https://guides.lib.unc.edu/evaluating-info/evaluate, ignoring usability and intended audience.

Upon receiving a question like "Will Twitter implement a new misinformation policy before the 2024 elections?" and information, it will:

  1. Create en evaluation plan
  2. Perform the evaluation of the information according to the plan from the previous step
  3. Extract the scores from the evaluation

Predict

Ported implementation from: https://github.com/valory-xyz/mech/blob/main/tools/prediction_request_embedding/prediction_sentence_embedding.py

Installation

poetry install
poetry shell

Run

Research

With Evo:

poetry run python ./evo_researcher/main.py research "Will Twitter implement a new misinformation policy before the 2024 elections?" evo

With Autonolas:

poetry run python ./evo_researcher/main.py research "Will Twitter implement a new misinformation policy before the 2024 elections?" autonolas

Predict

poetry run python ./evo_researcher/main.py predict "Will Twitter implement a new misinformation policy before the 2024 elections?" ./outputs/myinfopath

Evaluate

poetry run python ./evo_researcher/main.py evaluate "Will Twitter implement a new misinformation policy before the 2024 elections?" ./outputs/myinfopath

Test

Run all questions

pytest

Run specific questions

Use pytest's -k flag and a string matcher. Example:

pytest -k "Twitter"

Example results

Ideas for future improvement

For the researcher:

  • Using LLM re-ranking, like Cursor to optimize context-space and reduce noise
  • Use self-consistency and generate several reports and compare them to choose the best, or even merge information
  • Plan research using more complex techniques like tree of thoughts
  • Implement a research loop, where research is performed and then evaluated. If the evaluation scores are under certain threshold, re-iterate to gather missing information or different sources, etc.
  • Perform web searches under different topic or category focuses like Tavily does. For example, some questions benefit more from a "social media focused" research: gathering information from twitter threads, blog articles. Others benefit more from prioritizing scientific papers, institutional statements, and so on.
  • Identify strong claims and perform sub-searches to verify them. This is the basis of AI powered fact-checkers like: https://fullfact.org/
  • Evaluate sources credibility
  • Further iterate over chunking and vector-search strategies
  • Use HyDE

For the information evaluator/grader

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

evo_researcher-0.1.7.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

evo_researcher-0.1.7-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file evo_researcher-0.1.7.tar.gz.

File metadata

  • Download URL: evo_researcher-0.1.7.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-14-generic

File hashes

Hashes for evo_researcher-0.1.7.tar.gz
Algorithm Hash digest
SHA256 9d78be4c83d93e800c38f4a60a3cd369fd9b1e8d914aa89867aa97bcce95727f
MD5 5dcbb967bec72cd6f1051e9fe20f0ae3
BLAKE2b-256 65b85fc9bf3b1031a67afd798090b04a9b1a1c01e81646ce2f838cdf58a03af3

See more details on using hashes here.

File details

Details for the file evo_researcher-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: evo_researcher-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-14-generic

File hashes

Hashes for evo_researcher-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 fab47aa48a3495de8693bd31afa99f330d4f9b2a55a89a01df41368a72d9a71b
MD5 6dcfb80b9f1407262bcd1546363eff8f
BLAKE2b-256 895b6e2647fa001be13f5a8cd228b58d44a5fae2c7a4a0f80ce7d1c414ded777

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page