Skip to main content

Extrapolation methods to real series

Project description

Extrapolation Methods

Let be $S_n = {\sum}^{n}_{i=1} a_i$ a sequence of partial sums. This repository contains implementations of the following series transformations, which generate a new sequence $T_n$:

  • Aitken's transformation (or delta-squared process):

    • In esum: O($2n\log n$)
    • In acelsum: O($n$)

    $$T_n = \frac{S_{n-1} S_{n+1} - S_n^2}{S_{n+1} - 2 S_n + S_{n-1}}.$$

  • Richardson's transformation (modify, with given p):

    • In esum: O($2(\log n)^2$)
    • In acelsum: O($\log n$)

    $$T_n = S_{2n} + \frac{S_{2n} - S_n}{2^p - 1}.$$

    Here, we use $p = 1$ for simplicity.

  • Epsilon transformation:

    • In esum: O($2n\log n$)
    • In acelsum: O($n$)

    Let be the auxiliary sequence $\varepsilon_n^j$ defined by:

    $$\varepsilon_{-1}^{j} = 0\ \text{and}\ \varepsilon_{0}^{j} = S_j,$$

    and inductively:

    $$\varepsilon_{k+1}^{j} = \varepsilon_{k-1}^{j+1} + [\varepsilon_{k}^{j+1} - \varepsilon_{k}^{j}]^{-1}.$$

    Then, $T_n = \varepsilon_{n-1}^{2}$ (because the odd steps are only partial steps).

  • G transformation:

    • In esum: O($4n\log n$)
    • In acelsum: O($2n$)

    Let be two auxiliary sequences $s_j^{(n)}$ and $r_j^{(n)}$ defined by:

    $$s^{(n)}_0 = 1,\ r^{(n)}_1 = x_n,\ n=0,1,\ldots,$$

    inductively:

    $$s^{(n)}_{k+1} = s^{(n+1)}_{k} \left( \frac{r^{(n+1)}_{k+1}}{r^{(n)}_{k+1}} - 1 \right),\ k,n = 0,1,\ldots$$

    and

    $$r^{(n)}_{k+1} = r^{(n+1)}_{k} \left( \frac{s^{(n+1)}_{k}}{s^{(n)}_{k}} - 1 \right),\ k=1,2,\ldots;\ n=0,1,\ldots$$

    Then, $T_n = S_n - \frac{S_{n+1} - S_{n}}{r^{(n+1)}_{1} - r^{(n)}_{1}} r^{(n)}_{1}$.

  • Levin transformation:

    • In esum: O($4n\log n$)
    • In acelsum: O($2n$)

    This method is defined by

    $$W_n^{(k)} = \frac{M_n^{(k)}}{N_n^{(k)}}$$

    where

    $$M_n^{(0)} = \frac{S_n}{g(n)},$$

    $$M_{n}^{(k+1)} = \frac{M_{n+1}^{(k)} - M_{n}^{(k)}}{a_{n + k}^{-1} - a_{n + 1}^{-1}},$$

    and

    $$N_n^{(0)} = \frac{1}{g(n)},$$

    $$N_{n}^{(k+1)} = \frac{N_{n+1}^{(k)} - N_{n}^{(k)}}{a_{n + k}^{-1} - a_{n + 1}^{-1}}.$$

    For the function $g(n)$, we have some classic choices for this function:

    • t-variant: $g(n) = a_{n+1}$;
    • u-variant: $g(n) = n a_n$;
    • v-variant: $g(n) = a_n a_{n+1} / (a_{n+1} - a_n)$.

    Then, $T_n = \frac{M_n^{(1)}}{N_n^{(1)}}$.

Installation

Make sure you have the mpmath library installed:

pip install mpmath

To install the package, run the following command:

pip install extrapolation

Usage

We have the transformations implemented above, and for use have the esum and acelsum function.

esum

The esum receives on input:

  • A series: In the form of a function $f: \mathbb{N} \to \mathbb{R}$ returning the terms to be summed.
  • The Transformation: "Aitken", "Richardson", "Epsilon", "G", "Levin-t", "Levin-u", "Levin-v" and "None", the latter being using the initial series without any transformation.
  • The stopping criterion: In case the difference of the last two values of the series are smaller than a given error.
  • Return in logarithm scale: True if you want to receive the return in logarithm scale with the sign and False if you want to receive in normal scale.
  • Precision: If precision is 53 we use the default python precision, otherwise the given bits precision.

This function determines the minimum value of n for which, the difference between the last partial sums becomes less than the specified error when applying the transformation. And returns the series applied to the transformation. The following is an example:

from extrapolation import esum
import math

# Test with no_transform (without transformation) and with Richardson transformation the basel problem
n0, no_accelerated = esum(lambda x: 1/x**2, 'None', error=1e-12, logarithm=False, precision=100)
n1, accelerated = esum(lambda x: 1/x**2, 'Richardson', error=1e-12, logarithm=False, precision=100)

# Comparison
print(f"True value:           {math.pi ** 2 / 6}")
print(f"Without acceleration: {no_accelerated[-1]}, with {n0} iterations")
print(f"With acceleration:    {accelerated[-1]}, with {n1} iterations")

Out:

True value:           1.6449340668482264
Without acceleration: 1.6449330668487264267523920296, with 1000000 iterations
With acceleration:    1.6449340611255960068665838135, with 22896 iterations

acelsum

We have also the acelsum function, that receives on input:

  • A series: In the form of a function $f: \mathbb{N} \to \mathbb{R}$ returning the terms to be summed.
  • The Transformation: "Aitken", "Richardson", "Epsilon", "G", "Levin-t", "Levin-u", "Levin-v" and "None", the latter being using the initial series without any transformation.
  • Natural n: Number of values to be summed.
  • Return in logarithm scale: True if you want to receive the return in logarithm scale with the sign and False if you want to receive in normal scale.
  • Precision: If precision is 53 we use the default python precision, otherwise the given bits precision.

This function calculates partial sums up to a given natural value, returning the result in log-scale or normal by applying a chosen transformation. The following is an example:

from extrapolation import acelsum
import math

# Test with no_transform (without transformation) and with Richardson transformation the basel problem
no_accelerated = acelsum(lambda x: 1/x**2, 'None', n=1000, logarithm=False, precision=100)
accelerated = acelsum(lambda x: 1/x**2, 'Richardson', n=1000, logarithm=False, precision=100)

# Comparison
print(f"True value:           {math.pi ** 2 / 6}")
print(f"Without acceleration: {no_accelerated[-1]}")
print(f"With acceleration:    {accelerated[-1]}")

Out:

True value:           1.6449340668482264
Without acceleration: 1.6439345666815597935850701245
With acceleration:    1.6449310678482254269248263997

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

extrapolation-2.1.1.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

extrapolation-2.1.1-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file extrapolation-2.1.1.tar.gz.

File metadata

  • Download URL: extrapolation-2.1.1.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for extrapolation-2.1.1.tar.gz
Algorithm Hash digest
SHA256 9721cc52c2a195256268c2aa09c7cdfd4426fb9e5f678733e4556b9ef9fdf31d
MD5 04748806b7f654fe5d0c6a5954bf3792
BLAKE2b-256 fcdcfa6ef73f99e5098632be8e64b47e7e7b100b9282c7f2e628b829cfaec9f3

See more details on using hashes here.

Provenance

File details

Details for the file extrapolation-2.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for extrapolation-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 db36011deca2a531e54f208d4210e1b27b3c511d5b6f7130f1ea69cdac31fa7c
MD5 12fc1558bdf9f5652ee5e7b81c819374
BLAKE2b-256 04307118a86f6861b3b9baa06121b16b9b988c8728f03066d6b722f0e2312eef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page