Skip to main content

Exa - Pytorch

Project description

Multi-Modality

Exa

Ultra-optimized fast inference library for running exascale LLMs locally on modern consumer-class GPUs.

Principles

  • Radical Simplicity (Utilizing super-powerful LLMs with as minimal code as possible)
  • Ultra-Optimizated (High Performance classes that extract all the power from these LLMs)
  • Fludity & Shapelessness (Plug in and play and re-architecture as you please)

🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Zeta for you.


📦 Installation 📦

You can install the package using pip

pip install exxa

Usage

Inference

from exa import Inference

model = Inference(
    model_id="georgesung/llama2_7b_chat_uncensored",
    quantized=True
)

model.run("What is your name")

GPTQ Inference

from exa import GPTQInference

model_id = "facebook/opt-125m"
model = GPTQInference(model_id=model_id, max_length=400)

prompt = "in a land far far away"
result = model.run(prompt)
print(result)

Quantize

from exa import Quantize

#usage
quantize = Quantize(
     model_id="bigscience/bloom-1b7",
     bits=8,
     enable_fp32_cpu_offload=True,
)

quantize.load_model()
quantize.push_to_hub("my model")
quantize.load_from_hub('my model')

🎉 Features 🎉

  • World-Class Quantization: Get the most out of your models with top-tier performance and preserved accuracy! 🏋️‍♂️

  • Automated PEFT: Simplify your workflow! Let our toolkit handle the optimizations. 🛠️

  • LoRA Configuration: Dive into the potential of flexible LoRA configurations, a game-changer for performance! 🌌

  • Seamless Integration: Designed to work seamlessly with popular models like LLAMA, Falcon, and more! 🤖


💌 Feedback & Contributions 💌

We're excited about the journey ahead and would love to have you with us! For feedback, suggestions, or contributions, feel free to open an issue or a pull request. Let's shape the future of fine-tuning together! 🌱


License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

exxa-0.0.3.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

exxa-0.0.3-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file exxa-0.0.3.tar.gz.

File metadata

  • Download URL: exxa-0.0.3.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.0.3.tar.gz
Algorithm Hash digest
SHA256 9b255020199c2bead6e2679bdcdbac5f857d3c4f6aa8d11462190c355eb8cc2b
MD5 c176c10c2ee6f6be5a9f3a84c78a05f1
BLAKE2b-256 797fddf648da22c7442bd375563b83381cd338d6636c76cefcd807e85b55015c

See more details on using hashes here.

File details

Details for the file exxa-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: exxa-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for exxa-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 af13f24cd6bec8c80a5e1408fcc892d6500df9d91da13ded1ca46f27ed30ded1
MD5 654cda94fd6ae3e0aa8ad737b4bd7006
BLAKE2b-256 88a6c22f85b0259a858f47db0350a8bf4bcac104a024922b7a4a383dd6bf6cd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page