Skip to main content

Face analysis PyTorch framework.

Project description

facetorch

build lint PyPI Conda (channel only) PyPI - License Code style: black

Hugging Face Space demo app ๐Ÿค—

Google Colab notebook demo Open In Colab

User Guide, Documentation, ChatGPT facetorch guide

Docker Hub (GPU)

Facetorch is a Python library that can detect faces and analyze facial features using deep neural networks. The goal is to gather open sourced face analysis models from the community, optimize them for performance using TorchScript and combine them to create a face analysis tool that one can:

  1. configure using Hydra (OmegaConf)
  2. reproduce with conda-lock and Docker
  3. accelerate on CPU and GPU with TorchScript
  4. extend by uploading a model file to Google Drive and adding a config yaml file to the repository

Please, use the library responsibly with caution and follow the ethics guidelines for Trustworthy AI from European Commission. The models are not perfect and may be biased.

Install

PyPI

pip install facetorch

Conda

conda install -c conda-forge facetorch

Usage

Prerequisites

Docker Compose provides an easy way of building a working facetorch environment with a single command.

Run docker example

  • CPU: docker compose run facetorch python ./scripts/example.py
  • GPU: docker compose run facetorch-gpu python ./scripts/example.py analyzer.device=cuda

Check data/output for resulting images with bounding boxes and facial 3D landmarks.

(Apple Mac M1) Use Rosetta 2 emulator in Docker Desktop to run the CPU version.

Configure

The project is configured by files located in conf with the main file: conf/config.yaml. One can easily add or remove modules from the configuration.

Components

FaceAnalyzer is the main class of facetorch as it is the orchestrator responsible for initializing and running the following components:

  1. Reader - reads the image and returns an ImageData object containing the image tensor.
  2. Detector - wrapper around a neural network that detects faces.
  3. Unifier - processor that unifies sizes of all faces and normalizes them between 0 and 1.
  4. Predictor dict - set of wrappers around neural networks trained to analyze facial features.
  5. Utilizer dict - set of wrappers around any functionality that requires the output of neural networks e.g. drawing bounding boxes or facial landmarks.

Structure

analyzer
    โ”œโ”€โ”€ reader
    โ”œโ”€โ”€ detector
    โ”œโ”€โ”€ unifier
    โ””โ”€โ”€ predictor
            โ”œโ”€โ”€ embed
            โ”œโ”€โ”€ verify
            โ”œโ”€โ”€ fer
            โ”œโ”€โ”€ au
            โ”œโ”€โ”€ va
            โ”œโ”€โ”€ deepfake
            โ””โ”€โ”€ align
    โ””โ”€โ”€ utilizer
            โ”œโ”€โ”€ align
            โ”œโ”€โ”€ draw
            โ””โ”€โ”€ save

Models

Detector

|     model     |   source  |   params  |   license   | version |
| ------------- | --------- | --------- | ----------- | ------- |
|   RetinaFace  |  biubug6  |   27.3M   | MIT license |    1    |
  1. biubug6

Predictor

Facial Representation Learning (embed)

|       model       |   source   |  params |   license   | version |  
| ----------------- | ---------- | ------- | ----------- | ------- |
|  ResNet-50 VGG 1M |  1adrianb  |  28.4M  | MIT license |    1    |
  1. 1adrianb

Face Verification (verify)

|       model      |   source    |  params  |      license       | version |  
| ---------------- | ----------- | -------- | ------------------ | ------- |
|    MagFace+UNPG  | Jung-Jun-Uk |   65.2M  | Apache License 2.0 |    1    |
|  AdaFaceR100W12M |  mk-minchul |    -     |     MIT License    |    2    |
  1. Jung-Jun-Uk
  2. mk-minchul

Facial Expression Recognition (fer)

|       model       |      source    |  params  |       license      | version |  
| ----------------- | -------------- | -------- | ------------------ | ------- |
| EfficientNet B0 7 | HSE-asavchenko |    4M    | Apache License 2.0 |    1    |
| EfficientNet B2 8 | HSE-asavchenko |   7.7M   | Apache License 2.0 |    2    |
  1. HSE-asavchenko

Facial Action Unit Detection (au)

|        model        |   source  |  params |       license      | version |  
| ------------------- | --------- | ------- | ------------------ | ------- |
| OpenGraph Swin Base |  CVI-SZU  |   94M   |     MIT License    |    1    |
  1. CVI-SZU

Facial Valence Arousal (va)

|       model       |   source   |  params |   license   | version |
| ----------------- | ---------- | ------- | ----------- | ------- |
|  ELIM AL AlexNet  | kdhht2334  |  2.3M   | MIT license |    1    |
  1. kdhht2334

Deepfake Detection (deepfake)

|         model        |      source      |  params  |   license   | version |
| -------------------- | ---------------- | -------- | ----------- | ------- |
|    EfficientNet B7   |     selimsef     |   66.4M  | MIT license |    1    |
  1. selimsef

Face Alignment (align)

|       model       |      source      |  params  |   license   | version |
| ----------------- | ---------------- | -------- | ----------- | ------- |
|    MobileNet v2   |     choyingw     |   4.1M   | MIT license |    1    |
  1. choyingw

Model download

Models are downloaded during runtime automatically to the models directory. You can also download the models manually from a public Google Drive folder.

Execution time

Image test.jpg (4 faces) is analyzed (including drawing boxes and landmarks, but not saving) in about 486ms and test3.jpg (25 faces) in about 1845ms (batch_size=8) on NVIDIA Tesla T4 GPU once the default configuration (conf/config.yaml) of models is initialized and pre heated to the initial image size 1080x1080 by the first run. One can monitor the execution times in logs using the DEBUG level.

Detailed test.jpg execution times:

analyzer
    โ”œโ”€โ”€ reader: 27 ms
    โ”œโ”€โ”€ detector: 193 ms
    โ”œโ”€โ”€ unifier: 1 ms
    โ””โ”€โ”€ predictor
            โ”œโ”€โ”€ embed: 8 ms
            โ”œโ”€โ”€ verify: 58 ms
            โ”œโ”€โ”€ fer: 28 ms
            โ”œโ”€โ”€ au: 57 ms
            โ”œโ”€โ”€ va: 1 ms
            โ”œโ”€โ”€ deepfake: 117 ms
            โ””โ”€โ”€ align: 5 ms
    โ””โ”€โ”€ utilizer
            โ”œโ”€โ”€ align: 8 ms
            โ”œโ”€โ”€ draw_boxes: 22 ms
            โ”œโ”€โ”€ draw_landmarks: 7 ms
            โ””โ”€โ”€ save: 298 ms

Development

Run the Docker container:

  • CPU: docker compose -f docker-compose.dev.yml run facetorch-dev
  • GPU: docker compose -f docker-compose.dev.yml run facetorch-dev-gpu

Add predictor

Prerequisites

  1. file of the TorchScript model
  2. ID of the Google Drive model file
  3. facetorch fork

Facetorch works with models that were exported from PyTorch to TorchScript. You can apply torch.jit.trace function to compile a PyTorch model as a TorchScript module. Please verify that the output of the traced model equals the output of the original model.

The first models are hosted on my public Google Drive folder. You can either send the new model for upload to me, host the model on your Google Drive or host it somewhere else and add your own downloader object to the codebase.

Configuration

Create yaml file
  1. Create new folder with a short name of the task in predictor configuration directory /conf/analyzer/predictor/ following the FER example in /conf/analyzer/predictor/fer/
  2. Copy the yaml file /conf/analyzer/predictor/fer/efficientnet_b2_8.yaml to the new folder /conf/analyzer/predictor/<predictor_name>/
  3. Change the yaml file name to the model you want to use: /conf/analyzer/predictor/<predictor_name>/<model_name>.yaml
Edit yaml file
  1. Change the Google Drive file ID to the ID of the model.
  2. Select the preprocessor (or implement a new one based on BasePredPreProcessor) and specify it's parameters e.g. image size and normalization in the yaml file to match the requirements of the new model.
  3. Select the postprocessor (or implement a new one based on BasePredPostProcessor) and specify it's parameters e.g. labels in the yaml file to match the requirements of the new model.
  4. (Optional) Add BaseUtilizer derivative that uses output of your model to perform some additional actions.
Configure tests
  1. Add a new predictor to the main config.yaml and all tests.config.n.yaml files. Alternatively, create a new config file e.g. tests.config.n.yaml and add it to the /tests/conftest.py file.
  2. Write a test for the new predictor in /tests/test_<predictor_name>.py

Test and submit

  1. Run linting: black facetorch
  2. Add the new predictor to the README model table.
  3. Update CHANGELOG and version
  4. Submit a pull request to the repository

Update environment

CPU:

  • Add packages with corresponding versions to environment.yml file
  • Lock the environment: conda lock -p linux-64 -f environment.yml --lockfile conda-lock.yml
  • (Alternative Docker) Lock the environment: docker compose -f docker-compose.dev.yml run facetorch-lock
  • Install the locked environment: conda-lock install --name env conda-lock.yml

GPU:

  • Add packages with corresponding versions to gpu.environment.yml file
  • Lock the environment: conda lock -p linux-64 -f gpu.environment.yml --lockfile gpu.conda-lock.yml
  • (Alternative Docker) Lock the environment: docker compose -f docker-compose.dev.yml run facetorch-lock-gpu
  • Install the locked environment: conda-lock install --name env gpu.conda-lock.yml

Run tests + coverage

  • Run tests and generate coverage: pytest tests --verbose --cov-report html:coverage --cov facetorch

Generate documentation

  • Generate documentation from docstrings using pdoc3: pdoc --html facetorch --output-dir docs --force --template-dir pdoc/templates/

Profiling

  1. Run profiling of the example script: python -m cProfile -o profiling/example.prof scripts/example.py
  2. Open profiling file in the browser: snakeviz profiling/example.prof

Acknowledgements

I want to thank the open source code community and the researchers who have published the models. This project would not be possible without their work.

Logo was generated using DeepAI Text To Image API

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

facetorch-0.4.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

facetorch-0.4.0-py3-none-any.whl (38.0 kB view details)

Uploaded Python 3

File details

Details for the file facetorch-0.4.0.tar.gz.

File metadata

  • Download URL: facetorch-0.4.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for facetorch-0.4.0.tar.gz
Algorithm Hash digest
SHA256 5a303088e07c6e214428941c553e9cd4015540ba3f4f1158574d79398164a184
MD5 dbbf5c6c4be6b177fc957c206c472d1a
BLAKE2b-256 22cef940dd454738aeef671d5da8418675246cdacb14828bdc512a8b7d91f21f

See more details on using hashes here.

File details

Details for the file facetorch-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: facetorch-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 38.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for facetorch-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 06bd3a8709b02369928ce0546ae57dbcc6bb70f0b134ccfa74412981e01ed7d7
MD5 5c6a020d4e541eb6eafe0dc508ed62f0
BLAKE2b-256 5095be6f02246aa4a6ba66a5f8c7e4268f7c17044210cabb8e51358e605d86d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page