Evolutionary Scale Modeling (esm): Pretrained language models for proteins. From Facebook AI Research.
Project description
Evolutionary Scale Modeling
This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, including our state-of-the-art ESM-1b protein language model. The models are described in detail in our paper, "Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences" (Rives et al., 2019), which first proposed protein language modeling with Transformers.
Citation
@article{rives2019biological,
author={Rives, Alexander and Meier, Joshua and Sercu, Tom and Goyal, Siddharth and Lin, Zeming and Liu, Jason and Guo, Demi and Ott, Myle and Zitnick, C. Lawrence and Ma, Jerry and Fergus, Rob},
title={Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences},
year={2019},
doi={10.1101/622803},
url={https://www.biorxiv.org/content/10.1101/622803v4},
journal={bioRxiv}
}
Table of contents
What's New
- Dec 2020: Self-Attention Contacts for all pre-trained models (see Rao et al. 2020)
- Dec 2020: Added new pre-trained model ESM-1b (see Rives et al. 2019 Appendix B)
- Dec 2020: ESM Structural Split Dataset (see Rives et al. 2019 Appendix A.10)
Comparison to related works
Model | Pre-training | Params | SSP | Contact |
---|---|---|---|---|
UniRep | UR50* | 18M | 58.4 | 21.9 |
SeqVec | UR50* | 93M | 62.1 | 29.0 |
TAPE | PFAM* | 38M | 58.0 | 23.2 |
ProtBert-BFD | BFD* | 420M | 70.0 | 50.3 |
LSTM biLM (S) | UR50/S | 28M | 60.4 | 24.1 |
LSTM biLM (L) | UR50/S | 113M | 62.4 | 27.8 |
Transformer-6 | UR50/S | 43M | 62.0 | 30.2 |
Transformer-12 | UR50/S | 85M | 65.4 | 37.7 |
Transformer-34 | UR100 | 670M | 64.3 | 32.7 |
Transformer-34 | UR50/S | 670M | 69.2 | 50.2 |
ESM-1b | UR50/S | 650M | 71.6 | 56.9 |
Comparison to related protein language models. (SSP) Secondary structure Q8 accuracy on CB513. (Contact) Top-L long range contact precision on RaptorX test set.
* Pre-training datasets from related works have differences from ours.
Usage
Quick Start
As a prerequisite, you must have PyTorch 1.5 or later installed to use this repository.
You can either work in the root of this repository, or use this one-liner for installation:
$ pip install git+https://github.com/facebookresearch/esm.git
We also support PyTorch Hub, which removes the need to clone and/or install this repository yourself:
import torch
model, alphabet = torch.hub.load("facebookresearch/esm", "esm1b_t33_650M_UR50S")
Then, you can load and use a pretrained model as follows:
import torch
import esm
# Load ESM-1b model
model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
batch_converter = alphabet.get_batch_converter()
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
data = [
("protein1", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG"),
("protein2", "KALTARQQEVFDLIRDHISQTGMPPTRAEIAQRLGFRSPNAAEEHLKALARKGVIEIVSGASRGIRLLQEE"),
]
batch_labels, batch_strs, batch_tokens = batch_converter(data)
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[33], return_contacts=True)
token_representations = results["representations"][33]
# Generate per-sequence representations via averaging
# NOTE: token 0 is always a beginning-of-sequence token, so the first residue is token 1.
sequence_representations = []
for i, (_, seq) in enumerate(data):
sequence_representations.append(token_representations[i, 1 : len(seq) + 1].mean(0))
# Look at the unsupervised self-attention map contact predictions
import matplotlib.pyplot as plt
for (_, seq), attention_contacts in zip(data, results["contacts"]):
plt.matshow(attention_contacts[: len(seq), : len(seq)])
plt.title(seq)
plt.show()
Compute embeddings in bulk from FASTA
We provide a script that efficiently extracts embeddings in bulk from a FASTA file. A cuda device is optional and will be auto-detected. The following command extracts the final-layer embedding for a FASTA file from the ESM-1b model:
$ python extract.py esm1b_t33_650M_UR50S examples/some_proteins.fasta my_reprs/ \
--repr_layers 0 32 33 --include mean per_tok
Directory my_reprs/
now contains one .pt
file per FASTA sequence; use torch.load()
to load them.
extract.py
has flags that determine what's included in the .pt
file:
--repr-layers
(default: final only) selects which layers to include embeddings from.--include
specifies what embeddings to save. You can use the following:per_tok
includes the full sequence, with an embedding per amino acid (seq_len x hidden_dim).mean
includes the embeddings averaged over the full sequence, per layer.bos
includes the embeddings from the beginning-of-sequence token. (NOTE: Don't use with the pre-trained models - we trained without bos-token supervision)
Notebooks
Variant prediction - using the embeddings
To help you get started with using the embeddings, this jupyter notebook tutorial shows how to train a variant predictor using embeddings from ESM-1.
You can adopt a similar protocol to train a model for any downstream task, even with limited data.
First you can obtain the embeddings for examples/P62593.fasta
either by downloading the precomputed embeddings
as instructed in the notebook or by running the following:
# Obtain the embeddings
$ python extract.py esm1_t34_670M_UR50S examples/P62593.fasta examples/P62593_reprs/ \
--repr_layers 34 --include mean
Then, follow the remaining instructions in the tutorial. You can also run the tutorial in a colab notebook.
ESMStructuralSplitDataset and self-attention contact prediction
And this jupyter notebook tutorial shows how to load and index the ESMStructuralSplitDataset
,
and computes the self-attention map contact predictions as described in our paper "Transformer protein language models are unsupervised structure learners".
Available Models and Datasets
Pre-trained Models
Shorthand | Full Name | #layers | #params | Dataset | Embedding Dim | Model URL |
---|---|---|---|---|---|---|
ESM-1b | esm1b_t33_650M_UR50S | 33 | 650M | UR50/S | 1280 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1b_t33_650M_UR50S.pt |
ESM1-main | esm1_t34_670M_UR50S | 34 | 670M | UR50/S | 1280 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1_t34_670M_UR50S.pt |
esm1_t34_670M_UR50D | 34 | 670M | UR50/D | 1280 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1_t34_670M_UR50D.pt | |
esm1_t34_670M_UR100 | 34 | 670M | UR100 | 1280 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1_t34_670M_UR100.pt | |
esm1_t12_85M_UR50S | 12 | 85M | UR50/S | 768 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1_t12_85M_UR50S.pt | |
esm1_t6_43M_UR50S | 6 | 43M | UR50/S | 768 | https://dl.fbaipublicfiles.com/fair-esm/models/esm1_t6_43M_UR50S.pt |
ESM Structural Split Dataset
This is a five-fold cross validation dataset of protein domain structures that can be used to measure generalization of representations across different levels of structural dissimilarity. The dataset implements structural holdouts at the family, superfamily, and fold level. The SCOPe database is used to classify domains. Independently for each level of structural hold-out, the domains are split into 5 equal sets, i.e. five sets of folds, superfamilies, or families. This ensures that for each of the five partitions, structures having the same classification do not appear in both the train and test sets. For a given classification level each structure appears in a test set once, so that in the cross validation experiment each of the structures will be evaluated exactly once.
The dataset provides 3d coordinates, distance maps, and secondary structure labels. For further details on the construction of the dataset see Rives et al. 2019 Appendix A.10.
This jupyter notebook tutorial shows how to load and index the ESMStructuralSplitDataset
.
ESMStructuralSplitDataset
, upon initializing, will download splits
and pkl
.
We also provide msas
for each of the domains. The data can be directly downloaded below.
Name | Description | URL |
---|---|---|
splits | train/valid splits | https://dl.fbaipublicfiles.com/fair-esm/structural-data/splits.tar.gz |
pkl | pkl objects containing sequence, SSP labels, distance map, and 3d coordinates | https://dl.fbaipublicfiles.com/fair-esm/structural-data/pkl.tar.gz |
msas | a3m files containing MSA for each domain | https://dl.fbaipublicfiles.com/fair-esm/structural-data/msas.tar.gz |
Citations
If you find the models useful in your research, we ask that you cite the following paper:
@article{rives2019biological,
author={Rives, Alexander and Meier, Joshua and Sercu, Tom and Goyal, Siddharth and Lin, Zeming and Liu, Jason and Guo, Demi and Ott, Myle and Zitnick, C. Lawrence and Ma, Jerry and Fergus, Rob},
title={Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences},
year={2019},
doi={10.1101/622803},
url={https://www.biorxiv.org/content/10.1101/622803v4},
journal={bioRxiv}
}
For the self-attention contact prediction, see the following paper (biorxiv preprint):
@article{rao2020transformer,
author = {Rao, Roshan M and Meier, Joshua and Sercu, Tom and Ovchinnikov, Sergey and Rives, Alexander},
title={Transformer protein language models are unsupervised structure learners},
year={2020},
doi={10.1101/2020.12.15.422761},
url={https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1},
journal={bioRxiv}
}
Much of this code builds on the fairseq sequence modeling framework. We use fairseq internally for our protein language modeling research. We highly recommend trying it out if you'd like to pre-train protein language models from scratch.
License
This source code is licensed under the MIT license found in the LICENSE
file
in the root directory of this source tree.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file fair_esm-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: fair_esm-0.2.0-py3-none-any.whl
- Upload date:
- Size: 30.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef9d6a1dbc5f72c35bbef915d55449e8286d7da2f12fdfe0b644372c6a69dc7c |
|
MD5 | 6df623337551d8ab3e0f83d9ff2d0535 |
|
BLAKE2b-256 | f72c3e266873a3381fd3f5335ee619f74ffc371e54e3aa269fe01f6e726bf6fe |