Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

faiss_gpu-1.6.3-cp38-cp38-manylinux2010_x86_64.whl (35.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

faiss_gpu-1.6.3-cp37-cp37m-manylinux2010_x86_64.whl (35.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

faiss_gpu-1.6.3-cp36-cp36m-manylinux2010_x86_64.whl (35.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

faiss_gpu-1.6.3-cp35-cp35m-manylinux2010_x86_64.whl (35.5 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

File details

Details for the file faiss_gpu-1.6.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 35.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/2.7.12

File hashes

Hashes for faiss_gpu-1.6.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 70b3ebe0fdd8438e8d385684de00e7605b562a7680abba72fad4ef5c7f955fbf
MD5 64a177d12985bbb211b6edf77b60fc9e
BLAKE2b-256 a996e915d9306d2eedf4d5bc91d6633f63083716259458449f4b02a7271ddc2b

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 35.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/2.7.12

File hashes

Hashes for faiss_gpu-1.6.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cfdfe6681e24b69f429dcdec33d3a25ee2465a5e691d851218482ba8ad6892ee
MD5 9ef56f369740f3f23a59428ebc007c5f
BLAKE2b-256 1c43f33a7d59e7b367f34e1ab61db70a5a75194c848ea2df940c49f7aedc95d9

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 35.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/2.7.12

File hashes

Hashes for faiss_gpu-1.6.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 45f702846168d9b3a9435745c21fb6786684cbfa849a2e01cd79c2224eff4698
MD5 85e008418153834d511d56a95ee79ab8
BLAKE2b-256 a8690e3f56024bb1423a518287673071ae512f9965d1faa6150deef5cc9e7996

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.3-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.3-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 35.5 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/2.7.12

File hashes

Hashes for faiss_gpu-1.6.3-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e17178990518bd55e91c8364ef57dc4e3b4d20691c15e4eba6c88fd31e2e0c3a
MD5 fd03f67abee1f25bc35370d0e7f9ddac
BLAKE2b-256 aa06009d39e13186b3ad79619b69e0bdcfa1c0feafe2b3b7641583f6f4580e88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page