Skip to main content

A Python wrapper for the FAPEC data compressor.

Project description

FaPyc

A Python wrapper for the FAPEC data compressor. (C) DAPCOM Data Services S.L. - https://www.dapcom.es

The full FAPEC compression and decompression library is included in this package, but a valid license file must be available to properly use it. Without a license, you can still use the decompressor (yet with some limitations, such as the maximum number of threads and the recovery of corrupted files). You can get free evaluation licenses at https://www.dapcom.es/get-fapec/ to test the compressor. For full licenses, please contact us at fapec@dapcom.es Once a valid license is obtained (either full or evaluation), you must define a FAPEC_HOME environment variable pointing at the path where you have stored the fapeclic.dat license file.

Usage

There are 3 main execution modes:

  • File: When invoking Fapyc or Unfapyc on a filename, it will (de)compress it directly into another file.
  • Buffer: You can load the whole file to (de)compress on e.g. a byte array, and then invoke Fapyc/Unfapyc which will leave the result in the output buffer. Obviously, you should be careful with large files, as it may use a lot of RAM!
  • File-to-buffer decompression: You can directly decompress a file (without having to load it beforehand) and leave its decompressed output in a buffer, which you can use afterwards.
  • Chunk: FAPEC internally works in 'chunks' of data, typically 1-8 MB each (and up to 384MB each), which allows to progressively (de)compress a huge file while keeping memory usage under control. For now, this feature is only available in the FAPEC CLI, in WinFAPEC and in the C API, not in Fapyc/Unfapyc yet.

Examples

Compress and decompress a file

In this example we use the kmall option of FAPEC, suitable for this kind of geomaritime data files from Kongsberg Maritime:

from fapyc import Fapyc, Unfapyc

filename = input("Path to KMALL file: ")

print("Preparing to compress %s" % (filename))
# Here we invoke FAPEC to directly run on files,
# so the memory usage will be small (just 10MB or so)
# although it won't allow us to directly access the
# (de)compressed buffers.
f = Fapyc(filename, chunksize = 2048576, blen = 512)
f.compress_kmall()

print("Preparing to decompress %s" % (filename + ".fapec"))
uf = Unfapyc(filename + ".fapec")
uf.decompress(output=filename+".dec")

Compress and decompress a buffer

In this example we use the tab option of FAPEC, which typically outperforms gzip and bzip2 on tabulated text/numerical data such as point clouds or certain scientific data files:

from fapyc import Fapyc, Unfapyc

filename = input("Path to file: ")
file = open(filename, "rb")
# Beware - Load the whole file to memory
data = file.read()
f = Fapyc(buffer = data)
# Invoke our tabulated-text compression algorithm
# indicating a comma separator
f.compress_tabtxt(sep1=',')
print("Ratio =", round(float(len(data))/len(f.outputBuffer), 4))

# Now we decompress the buffer
uf = Unfapyc(buffer = f.outputBuffer)
uf.decompress()

Decompress a file into a buffer, and do some operations on it

Here we provide a quite specific use case, based on ESA/DPAC Gaia (E)DR3 bulk catalogue (which is publicly available as FAPEC-compressed CSVs). In this example, we decompress one of the files, get its CSV-formatted contents with Pandas, apply some filtering conditions, and generate a histogram.

from fapyc import Unfapyc
from io import BytesIO
import pandas as pd
import matplotlib.pyplot as plt

filename = input("Path to CSV-FAPEC file: ")

### Option 1: open the file, load it to memory (beware!), and decompress the buffer:
#file = open(filename, "rb")
#data = file.read()
#uf = Unfapyc(buffer = data)

### Option 2: directly decompress from the file into a buffer:
uf = Unfapyc(filename = filename)

# Actual decompressor invocation - same for both options
uf.decompress()

# Regenerate the CSV from the bytes buffer
df = pd.read_csv(BytesIO(uf.outputBuffer), comment="#")

print("Info from the full CSV:")
print(df.info())
# Prepare some nice histograms for all data
plt.subplot(2,2,1)
plt.title("Full CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,2)
plt.title("Full CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

# Now let's repeat, but doing the histogram from only the values that fulfil
# some conditions on some of the CSV fields
print("Loading+filtering CSV...")
iter_csv = pd.read_csv(BytesIO(uf.outputBuffer), comment="#", iterator=True, chunksize=1000)
df = pd.concat((x.query("ra_error < 0.1 & dec_error < 0.1 & ruwe > 0 & ruwe < 5") for x in iter_csv))
print("Info from the filtered CSV:")
print(df.info())
plt.subplot(2,2,3)
plt.title("Filtered CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,4)
plt.title("Filtered CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

print("Plotting!")
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fapyc-0.3.4-cp312-cp312-win_amd64.whl (794.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

fapyc-0.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (905.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp312-cp312-macosx_13_0_x86_64.whl (518.2 kB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

fapyc-0.3.4-cp312-cp312-macosx_13_0_arm64.whl (474.1 kB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

fapyc-0.3.4-cp311-cp311-win_amd64.whl (794.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

fapyc-0.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (899.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp311-cp311-macosx_13_0_x86_64.whl (517.9 kB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

fapyc-0.3.4-cp311-cp311-macosx_13_0_arm64.whl (473.4 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

fapyc-0.3.4-cp310-cp310-win_amd64.whl (794.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

fapyc-0.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (868.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp310-cp310-macosx_13_0_x86_64.whl (516.9 kB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

fapyc-0.3.4-cp310-cp310-macosx_13_0_arm64.whl (472.9 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

fapyc-0.3.4-cp39-cp39-win_amd64.whl (801.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fapyc-0.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (871.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp39-cp39-macosx_13_0_x86_64.whl (517.6 kB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

fapyc-0.3.4-cp39-cp39-macosx_13_0_arm64.whl (473.5 kB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

fapyc-0.3.4-cp38-cp38-win_amd64.whl (802.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

fapyc-0.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (875.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp38-cp38-macosx_13_0_x86_64.whl (517.9 kB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

fapyc-0.3.4-cp38-cp38-macosx_13_0_arm64.whl (473.9 kB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

fapyc-0.3.4-cp37-cp37m-win_amd64.whl (801.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

fapyc-0.3.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp37-cp37m-macosx_13_0_x86_64.whl (517.0 kB view details)

Uploaded CPython 3.7m macOS 13.0+ x86-64

fapyc-0.3.4-cp37-cp37m-macosx_13_0_arm64.whl (473.2 kB view details)

Uploaded CPython 3.7m macOS 13.0+ ARM64

fapyc-0.3.4-cp36-cp36m-win_amd64.whl (806.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

fapyc-0.3.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (834.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fapyc-0.3.4-cp36-cp36m-macosx_13_0_x86_64.whl (513.8 kB view details)

Uploaded CPython 3.6m macOS 13.0+ x86-64

fapyc-0.3.4-cp36-cp36m-macosx_13_0_arm64.whl (469.8 kB view details)

Uploaded CPython 3.6m macOS 13.0+ ARM64

File details

Details for the file fapyc-0.3.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 794.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6022ef50d10dd636c5025c0ef601bf58de342c6ec9f6753b947d77f73f0f23ff
MD5 8f3b18bb89a75606ae1fc6d6e1339ef8
BLAKE2b-256 088de308946075e7e34ca251d886e73de54c1071887aad69d237401ff14e673f

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 546422748f93e064eeb329b23381b44dd50dedb6c3621e9bda339457459b27f0
MD5 3217d142e1ac07634d5dc50cc073c46c
BLAKE2b-256 cb515fbb451be17e8c7f6658fe424e89e9db3f6c0ed2822bfb8635e2e1a59697

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8bf1a5c4292a9bf2bd1de48d86bc38f65b4e7d1dd7cccaf43bcc4a172188163b
MD5 a326b80422409aa340f1a94859a90d25
BLAKE2b-256 b97af6a6b12dd6631bf352f66617d9d1eb43d5f042e270ecffd0acf45b99a2b6

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 2a2f71dc8d49571af0a72118796a8e8605ab155f889491a743d4a33cc7dcc23a
MD5 bce3ae11da2e35ea878076fd42cb525f
BLAKE2b-256 1dde211c7ecf49337854eaadc94dc90d52523df522688487cb518e475be28504

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 794.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8d91f2b4feb05bc32cea605b6632f58653f94b95624cddbf157a1d40b01cc14c
MD5 4e5a085779e6275b7c7db5df50549274
BLAKE2b-256 e01db238c8bbedb4239fad0e5df7ec7c84e4aedf2d67f8ce7d6402cd6d195120

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0850c3ca9b99f0292b78ad169129ee12ce221aa15739b1258efffd150e7fbf97
MD5 3f79cac95e68d49907c3af609bd75954
BLAKE2b-256 024cf487db939f2fb9fc76bf95c1c0510c9cf3adcd91565009956deee8180ef9

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 baab8ab1273f68706617a370ee355d17486928c86821bd26d8d97a3c2473834f
MD5 37949edfd05ba0cb1294248e82545f59
BLAKE2b-256 43d8d22a6a0762cb7e5dc34cc0406723a69d5218af0a59188d1f988bdb7baa3d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 29f2488ae956947c12c6477834a026fcdd659246674ed5bba4c7cd26b391f970
MD5 2db32f53bafbedb552aaea295a6cbaf8
BLAKE2b-256 0dcd11b8a6fe72f2f7e0a611c7038c9442b32f98ff962bfaf1c5b57d6e068e76

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 794.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d2710d7cd9358736ba822a1cce1480e356616e00e0ad0c6d1086f11ef8ebd1c6
MD5 18385de4ff0300fa8d572429a9e236e9
BLAKE2b-256 0730c04863556a714761386791efede5f2f4615506377b44b31c33c22f272447

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b690671895f4b7436b920174402cae6452f0d630da1d5dedfeeb8e7c3e46201c
MD5 bec8e20f8b1bfaf9b20fc1adfa8e6c8d
BLAKE2b-256 7611e93c55c03fd1173be56604cf3eeaeebfa377a10db7e40efab7a6989bff16

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 76328449f2f31ca943cd87b7538b625e48153ebec6340948059673fd267d55d8
MD5 48428990742029e60e036901cadf3253
BLAKE2b-256 7708d9741f9ab62c0a80201a4f31448bf1ed9f79feef1f5b746b38ac02a46304

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 16f986ecf3dcbb9f0979de90443c54c9461214f57cad9dfd23addbbbb99d218c
MD5 ad97aec6015901ca5dd0ced47c567f0f
BLAKE2b-256 2e1588bd52851b2a50cbefb2cedf3707a1b7a320d17d0f03ba88b23f45a690c4

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 801.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f77c472728d3bf5973378eb442a3aad0e53b3aa64e3f70237d8cf0da015b33ef
MD5 1689f8ef9cdc4c9d10fbb238912b7f13
BLAKE2b-256 e8cedbdef9814317db233345cffb7415718fccd44e283e9d5771ab36525a4d3d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff3a433ddd1a7dd37b0444ddbeaa625c7b72d25fdadf9edb9cc1f36532f3d73c
MD5 0dc82655a2a30bafb9843e8f8c5e4533
BLAKE2b-256 4f02e9ad98bdb654fc68f2c22058f9b0e01280c93953a6eab21b56fccd46658e

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 090ea0a837241887d49d8d941f7db07e8de3fff6c48a1478852028d3b5c28b6a
MD5 a9f428242cbfab1e76526771d2130e6f
BLAKE2b-256 0a18e938c51ab28a9daeba82487161146f03ac1caa64df816df854546d4bcd6f

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 04fcf4352eaeedce1dfc29b0de8fe6a97a99bdd70f1a69e66957cf41474946c1
MD5 df8d87cd2b8adcfabf9a06ee5ba62036
BLAKE2b-256 f51c0a868b397b53fd97d263201fcd231f6942c43e30a95d675eef9533848042

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 802.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6b135f451a5de4f8f87bcbfda7febffb98f023882a74559fac0bee18371c6115
MD5 7e03f4d141bd50486cab8e63beba4abe
BLAKE2b-256 e7fde79ee6ea3bfd15087dac0031857edd3b3a74467216202551679df1ee27f2

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d31c4bb570fcfbfd8b92f86f4b663ad116bba3016e5cc79e41eb314b4420d41e
MD5 88690c93cd9e151fcdb0e6b22836bfb2
BLAKE2b-256 65492f6ef9ad65ee4a2e4f3db73fb8b85ece48b9375bc5686d032eb1c2a9392b

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7e005b40a6fd4fc5da1a6a714710394c4f8b96aba74886c304e261ddfded0f26
MD5 85ca11179ec734aa8b332bd1382fbf54
BLAKE2b-256 c671b72d2d6cdf3a56b527caace5e5d300bac84fd0b93db7036e76a40524ef36

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 517ee0a33880b7440aa35e418aa40aa3a717f6909ac564e8f8df7adb46011d11
MD5 1ab6ad446727e8b56dd5f31aad9734c3
BLAKE2b-256 4e2607b91aa0fe9a9c7c5d95b784333a7f9e8e8deecc4a0bbd6fa9b02ce7a122

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 801.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 577aa21786ab3286671107c0a9da33f6961482599bf0a518472c5f76ee7c4710
MD5 403a0c9a69ef3b08ff945f84cfae0c22
BLAKE2b-256 f92d32843ba6a31a470d13b8ed441a87f7b6aa8aeb5c7f37293912a0ccc73c1b

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10728ba02a7d5de5e5faf1e65e70439d1d5bd78f3282ebe013d0814def37893c
MD5 8e9b1730ec50fae0581d45843beb6fe6
BLAKE2b-256 aad41b49478c3ed94f2559eb53110b02a6b35bacbe01df756c880f8e88052d5d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp37-cp37m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp37-cp37m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 3895750a7adb1396a887e251cdabf9652e34781cd81ba1fa2dff3a686a89eb9b
MD5 2c23a9d6696987f2042e567fda5632f8
BLAKE2b-256 c373d8bbd8492013478fa9d0c109bbe0d1c108728267ff89c938c04a00b336c7

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp37-cp37m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp37-cp37m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 3b4d183a6f177b9fb2cc052d31ec6ebc3f462b5f5ec800e9c8e6c8c196e42ed4
MD5 1917721b40118d503aa83b2beaf5bba5
BLAKE2b-256 faa54c233a0283b4cb3a6da4a0fcfd535a1a5689e0a57cf8f42576edfe5ad456

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 806.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a88d19d41894e7f79fff3b5378f6830158d73df56d21c32cd81e692bbfa2a07b
MD5 8d59e9514fdeb375650d8a2414eadd9d
BLAKE2b-256 5fe4faa6cbf7cfe685eee605fcfa105a44ee80c9bb57729e4d48d826b3cfd01d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7dd283c1b012bdb8880f30689754cab5a12ad0220b772546a27aa3809e7437d
MD5 2fdc3f2116b1d19c0bec2d0f54350e83
BLAKE2b-256 ff4ee49a38a8773d0386c2fd864702cc003eb29ce2f56c705765d5167e3bc614

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp36-cp36m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp36-cp36m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1fb6ee87680716c91be9e63017783cb7085bf9a81f973cb0d3503fc3e4bb65c9
MD5 4862e78b4fbb289f2402c8bde0bf1754
BLAKE2b-256 d06480bc449be35be2827888a9b96eb40e2cdd8d08f2d8a3445da4ce20fddeab

See more details on using hashes here.

File details

Details for the file fapyc-0.3.4-cp36-cp36m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.4-cp36-cp36m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c7dfaa08789b0bcc84ed73c05c29b8444d9ce0e6f8720ce7f83958cf79c11c8d
MD5 cf6a301927a5e080141c7a75145773ab
BLAKE2b-256 e97e306c786a6deb815de9fd75246c3b6a09a75d1550c39ae5690e3587b5858b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page