Skip to main content

A Python wrapper for the FAPEC data compressor.

Project description

FaPyc

A Python wrapper for the FAPEC data compressor. (C) DAPCOM Data Services S.L. - https://www.dapcom.es

The full FAPEC compression and decompression library is included in this package, but a valid license file must be available to properly use it. Without a license, you can still use the decompressor (yet with some limitations, such as the maximum number of threads and the recovery of corrupted files). You can get free evaluation licenses at https://www.dapcom.es/get-fapec/ to test the compressor. For full licenses, please contact us at fapec@dapcom.es Once a valid license is obtained (either full or evaluation), you must define a FAPEC_HOME environment variable pointing at the path where you have stored the fapeclic.dat license file.

Usage

There are 3 main execution modes:

  • File: When invoking Fapyc or Unfapyc on a filename, it will (de)compress it directly into another file.
  • Buffer: You can load the whole file to (de)compress on e.g. a byte array, and then invoke Fapyc/Unfapyc which will leave the result in the output buffer. Obviously, you should be careful with large files, as it may use a lot of RAM!
  • File-to-buffer decompression: You can directly decompress a file (without having to load it beforehand) and leave its decompressed output in a buffer, which you can use afterwards.
  • Chunk: FAPEC internally works in 'chunks' of data, typically 1-8 MB each (and up to 384MB each), which allows to progressively (de)compress a huge file while keeping memory usage under control. For now, this feature is only available in the FAPEC CLI, in WinFAPEC and in the C API, not in Fapyc/Unfapyc yet.

Examples

Compress and decompress a file

In this example we use the kmall option of FAPEC, suitable for this kind of geomaritime data files from Kongsberg Maritime:

from fapyc import Fapyc, Unfapyc

filename = input("Path to KMALL file: ")

print("Preparing to compress %s" % (filename))
# Here we invoke FAPEC to directly run on files,
# so the memory usage will be small (just 10MB or so)
# although it won't allow us to directly access the
# (de)compressed buffers.
f = Fapyc(filename, chunksize = 2048576, blen = 512)
f.compress_kmall()

print("Preparing to decompress %s" % (filename + ".fapec"))
uf = Unfapyc(filename + ".fapec")
uf.decompress(output=filename+".dec")

Compress and decompress a buffer

In this example we use the tab option of FAPEC, which typically outperforms gzip and bzip2 on tabulated text/numerical data such as point clouds or certain scientific data files:

from fapyc import Fapyc, Unfapyc

filename = input("Path to file: ")
file = open(filename, "rb")
# Beware - Load the whole file to memory
data = file.read()
f = Fapyc(buffer = data)
# Invoke our tabulated-text compression algorithm
# indicating a comma separator
f.compress_tabtxt(sep1=',')
print("Ratio =", round(float(len(data))/len(f.outputBuffer), 4))

# Now we decompress the buffer
uf = Unfapyc(buffer = f.outputBuffer)
uf.decompress()

Decompress a file into a buffer, and do some operations on it

Here we provide a quite specific use case, based on ESA/DPAC Gaia (E)DR3 bulk catalogue (which is publicly available as FAPEC-compressed CSVs). In this example, we decompress one of the files, get its CSV-formatted contents with Pandas, apply some filtering conditions, and generate a histogram.

from fapyc import Unfapyc
from io import BytesIO
import pandas as pd
import matplotlib.pyplot as plt

filename = input("Path to CSV-FAPEC file: ")

### Option 1: open the file, load it to memory (beware!), and decompress the buffer:
#file = open(filename, "rb")
#data = file.read()
#uf = Unfapyc(buffer = data)

### Option 2: directly decompress from the file into a buffer:
uf = Unfapyc(filename = filename)

# Actual decompressor invocation - same for both options
uf.decompress()

# Regenerate the CSV from the bytes buffer
df = pd.read_csv(BytesIO(uf.outputBuffer), comment="#")

print("Info from the full CSV:")
print(df.info())
# Prepare some nice histograms for all data
plt.subplot(2,2,1)
plt.title("Full CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,2)
plt.title("Full CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

# Now let's repeat, but doing the histogram from only the values that fulfil
# some conditions on some of the CSV fields
print("Loading+filtering CSV...")
iter_csv = pd.read_csv(BytesIO(uf.outputBuffer), comment="#", iterator=True, chunksize=1000)
df = pd.concat((x.query("ra_error < 0.1 & dec_error < 0.1 & ruwe > 0 & ruwe < 5") for x in iter_csv))
print("Info from the filtered CSV:")
print(df.info())
plt.subplot(2,2,3)
plt.title("Filtered CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,4)
plt.title("Filtered CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

print("Plotting!")
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fapyc-0.3.5-cp312-cp312-win_amd64.whl (803.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

fapyc-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp312-cp312-macosx_13_0_x86_64.whl (519.3 kB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

fapyc-0.3.5-cp312-cp312-macosx_13_0_arm64.whl (475.3 kB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

fapyc-0.3.5-cp311-cp311-win_amd64.whl (803.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

fapyc-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp311-cp311-macosx_13_0_x86_64.whl (519.0 kB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

fapyc-0.3.5-cp311-cp311-macosx_13_0_arm64.whl (474.6 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

fapyc-0.3.5-cp310-cp310-win_amd64.whl (803.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fapyc-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp310-cp310-macosx_13_0_x86_64.whl (518.0 kB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

fapyc-0.3.5-cp310-cp310-macosx_13_0_arm64.whl (474.1 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

fapyc-0.3.5-cp39-cp39-win_amd64.whl (810.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

fapyc-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp39-cp39-macosx_13_0_x86_64.whl (518.7 kB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

fapyc-0.3.5-cp39-cp39-macosx_13_0_arm64.whl (474.6 kB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

fapyc-0.3.5-cp38-cp38-win_amd64.whl (810.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

fapyc-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp38-cp38-macosx_13_0_x86_64.whl (519.0 kB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

fapyc-0.3.5-cp38-cp38-macosx_13_0_arm64.whl (475.0 kB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

fapyc-0.3.5-cp37-cp37m-win_amd64.whl (810.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

fapyc-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp37-cp37m-macosx_13_0_x86_64.whl (518.1 kB view details)

Uploaded CPython 3.7m macOS 13.0+ x86-64

fapyc-0.3.5-cp37-cp37m-macosx_13_0_arm64.whl (474.3 kB view details)

Uploaded CPython 3.7m macOS 13.0+ ARM64

fapyc-0.3.5-cp36-cp36m-win_amd64.whl (814.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

fapyc-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fapyc-0.3.5-cp36-cp36m-macosx_13_0_x86_64.whl (514.9 kB view details)

Uploaded CPython 3.6m macOS 13.0+ x86-64

fapyc-0.3.5-cp36-cp36m-macosx_13_0_arm64.whl (471.0 kB view details)

Uploaded CPython 3.6m macOS 13.0+ ARM64

File details

Details for the file fapyc-0.3.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 803.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 207f2f35023a6f087bb5e0ef1d0cf3873e41eb39dc6c318c77196a7f5cfa6203
MD5 02c11ee24fd8a7cd8223ec0c20731f21
BLAKE2b-256 780cfd01751c8dddb6c2436e8997573f4156d1da9a4b778e715ebe6ec312a4f4

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d4b75af407582eed9ffcf3fca8474288c974da41d46776dc3a4548cbe04383b
MD5 2cddb7e87cace205df4e7d7e8d216b06
BLAKE2b-256 b15625e428e22a947cdf46a02d4b69064363e8308a933047f6081d11e939fae2

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 58180ec65effd1c86508295f636e456dd3b4a2f8bacd4939a95e8a120da23610
MD5 9ab3b1d4a72377d27468b0c185408c48
BLAKE2b-256 1bd1a065ac22a5d6523211776d710ae474a86a7a4d956d330f90c91ea3e7a519

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 e7531044b66f399fe410c0e24dbc3f762dcbb145b959a0f995bf5a540436b388
MD5 eb21ef0a07ae1ed3e1e174b086d783aa
BLAKE2b-256 11453d914eb0c66e1c762a7e96c7c9f6510fd67fd2585e9138e79d05fec8ff98

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 803.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f203bb7692bee84af91c521a7d952ebd96333276716b3e71f5df01fd05324723
MD5 8720e45400246733213bc00629acb348
BLAKE2b-256 db1244f3cacfca5f6a48d93c386060dda6d706594875c2c86b2bfb4c5af92e6d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce4f634b7e3aef4baac963c589dbf0428c98e476b4cbf6814cf7eaa98cebbbff
MD5 008b55cc54e57e2690c5f965607a9258
BLAKE2b-256 a2e8c333bd34d7fce4a3032498c6cc7f511981cf08c3168a65eb55cb16127c22

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 fafe9662bfef570550cad27b1c7cff673e287693904311f36f630aaabf92592a
MD5 ba1334558588f8ad8a6855a061dc9d63
BLAKE2b-256 b0da57add6951f884ad5bc97cc56a3edf88a765fe37b01eddef0bc066b193ee0

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 afe6b517f0fce11c2a2827d943cc2ee0671aa501dca2827dfbe9de70c8df6f22
MD5 09e8512a4cef73c36781378e79fa7dd6
BLAKE2b-256 5d0bf3c7f67625436e4318d064a1b645d1d223fb341e5e05edf058de6eec4e7d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 803.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f4d64f6d03724f8e79ffdd527982600c6af805815e8ae247506640343bf1e9c0
MD5 9c3bd3e481ef73d0018a662962150db2
BLAKE2b-256 210968872609fae1a18c0841ae67dd0b83b86668a9462a34c8298cb89bbd1e0d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f000b53bbcb3724fdaba3a377d449c149699fdf14061df3f3416f1ac072152d
MD5 696a192aa2e7333ef90d479c6166074f
BLAKE2b-256 30ada1b8b73fae8078344fe1a89666e972f4eef9426b4353e6b8e9963ea92e44

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 d336abed5db9bc26cc4f1656ab4a990adf2e9c462cdbcc9585338181b4b9fbfb
MD5 568461cab51f720cc38788e889bf3e5d
BLAKE2b-256 25f452c11f911a11e153306e5b029506f5a6b0c5d4def3b35cd9fb8013bfcde5

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 0cf39b54ad5c28385792e7fde87c0f274a0c3633903df4e90ee983fa9155f0e4
MD5 a72bc8491cff19c3e2fa8e98ff89c525
BLAKE2b-256 6dcb5a541fad9c86149965400939baafdc6e6e1c5fbffb1cdec8c92fd3bcdf3d

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 810.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 199ac6b423bdfcc23e0d54be1c5b077ef7e18766414031767caa68e0c2fc01ef
MD5 21206c7061a7346ba7a7a64f5bfe81d7
BLAKE2b-256 05c1aefaf7f09fdf242fa4919589029a029bf7105f07c01d4f1f458bcc99f839

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60b508bf880183baf2b1dab9356efe552a5cb251a3a5042a3fa8fa7bbe14af2d
MD5 3516577980fb7b9c3828a242d8587e3a
BLAKE2b-256 a67d6ab6499332c7c53e74476fa7b36b8169768b9da5d4c5d5120c8906d48177

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 923d5a22801041435d263f6891648d8f57d894e1b54034c13a79a7f527b1125c
MD5 3df8f39bbb6286e05a74655fd3b5c771
BLAKE2b-256 82e12f911412c20256f6f1b7fbbfe47bc3294ed62027456b1aed8f1d28907b17

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 cd628ac75e69f383be8635d81c278a76475ee1d3ca666e3af156d9edb98bf504
MD5 3027ee1f0f8ce098cb94ef6401ec4758
BLAKE2b-256 b5f7a4eee63a238e85adc537e6c624900efaa5caa6796ad83472ceb2d616a827

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 810.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ecaab7348bdbf0cf04b9fbfd4369d9c3ed4c4e80561806bb43eb28b7061d71ca
MD5 1197cb6929fb9d4f1add6a930cde8694
BLAKE2b-256 437162d63520c10f1486c0a34f2bfee6259e7f67d471316d9c344ce777181edc

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b43b68d78367cce97949b2549ebea64ee378ba3cfb04690111c52a2c6043adc
MD5 2494e02565b961dcf53f6e18194780f7
BLAKE2b-256 7095a58d7cd5d2837c682536958d1f316fc4c2322d23df11a982d297c867032b

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 f219accbced554dcea756767ae6b9397711e20fc8024d0ee0a1c774640dfd39c
MD5 7ba3404f3b8c7d17f4b360ba0ed1eab9
BLAKE2b-256 1ae6afc6f840be2fb20a46b5fd2fdbaee3d10e2c4897e309a345864e9dd5dfe5

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 420bf6f7914b00d9842a21c1843971557ac6cbb8aca5e80a604d8c48838a5f2c
MD5 8fbda6f5b4f70df31471a54f97257573
BLAKE2b-256 64aa522cf381f94cb8e3841a3c0a0c757631253d202e1c8ca06cb2cfbb67db6e

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 810.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7f656df467fc802f86af40e42f570a618aff7975291ef9b819f0e38fc9a6815c
MD5 76c2272f9608911f6c1a99e51c5ce89a
BLAKE2b-256 37966d2bbe7c702f72a4084ac819ca625ef4d5ce387bd6265cbfa13ff44a88fe

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 228f37c9330aa35bce02a0213f961410036542dc89fc6fe56d71c101d0477958
MD5 a98a9ad28980257350e0b22c2bdacc60
BLAKE2b-256 83f3c830be6d25468cc1637f63c2ea86acb67a8e8dc74ee042c2b7cc6f2baea0

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp37-cp37m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp37-cp37m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 b4dff1be40528f9262c557700e6347d57b63e5edd224c966014817cc91fea97f
MD5 7d5a297c2f63570ee5dc9d402448b6d0
BLAKE2b-256 d185c0b656aed9ef6b674a7afa22c62db698b7874a786391754cca33e3b3e6e7

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp37-cp37m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp37-cp37m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 aaf636bcdd335caea31b21c2d8c1265aee7da9a4454624a5274b75e26cd2d660
MD5 bb5b9ddbf549693871ad62ffd44704d0
BLAKE2b-256 468b49e06f9f397ef1cfac833a4d572bd0799577c0c319859be55a9cf53e45d5

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 814.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for fapyc-0.3.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 abafa8779c2cc9c1919bd2ef02a678f456ae2430a39d048ca04f18c22b5ddb72
MD5 aa32a3b71b7f2a77a91114e878d456cf
BLAKE2b-256 006b33fd82349e89fddca5cbd84a9912c383992e6a64e6de654f001b64a4efe3

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f54ca01c3673bb1be02135c3fa70bb337341a158f966f6c92fa711b7a44ccc00
MD5 573ceb081255c152b2f1693165c1b274
BLAKE2b-256 3100bc3c28995275781cef764acc1204186e7fe5658deac375fce5c052e485b7

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp36-cp36m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp36-cp36m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 5872ec7d55c2cb98f579659d741346f29145d352bd526df964498dc80ff05bcb
MD5 d1bcb268c056eb5e93799a755a885f89
BLAKE2b-256 ab72df3b22ed50780b5ed5badd15b105acb1ceabd43422e31c9574bb4916055c

See more details on using hashes here.

File details

Details for the file fapyc-0.3.5-cp36-cp36m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.5-cp36-cp36m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9c6d8512bfbde554392bab4745aad33184e2f9e11917d79930b23d72d8c46857
MD5 5737de43db7ccb56e7a1e06036046c47
BLAKE2b-256 80a5318eced371398300a347b2cc83f5619833eb3487980d852b699e87ee2245

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page