Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models
Project description
Fast-Layers
Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models
Installation: !pip install fast-layers
https://pypi.org/project/fast-layers/
Introduction
Tensorflow's sequential model is a very intuitive way to start learning about Deep Neural Networks. However it is quite hard to dive into more complex networks without learning more about Keras.
Well it won't be hard anymore with Fast-layers! Define your Sequences and start building complex layers in a sequential fashion.
I created fast-layers for beginners who wants to build more advanced networks and for experimented users who needs to quickly build and test complex module architectures.
Documentation
Please note that eager execution is not supported for the moment
class Sequence:
Arguments:
name: str, positional arg
inputs: str: name of input pipe/connector | list: names of input pipes/connectors, positional arg
sequence=None: list of keras.layers objects,
is_output_layer=False,
trainable=True,
Attributes:
inputs: str or list of input names.
sequence: list of keras.layers objects,
is_output_layer: True if this is the output Sequence of a Layer object.
Methods:
call(x, training=False): by calling the sequence through __call__(), computes x.
self_build(): build the layers of the sequence into this Sequence object.
class Layer:
Arguments:
sequences: list of sequences,
trainable=True,
n_iteration_error=50: max number of iteration permitted in the computation loop before break
Attributes:
names: list of sequences names
trainable: True if the weights of this layer are trainable.
sequences: list of sequences
first_call=True: False means the Layer object has been called and
n_iteration_error: max number of iteration permitted in the computation loop before break
Methods:
init_layer(sequences): Takes a list of sequences and initialize the layer. Is called on __init__() if the layer
object has been instantiate with the argument sequences=*List of sequences*
call(x, training=False): by calling the layer through __call__(), computes x.
TUTORIAL: MNIST classification using Inception modules with Fast-Layers
Try it yourself: https://www.kaggle.com/alexandremahdhaoui/fast-layers-tutorial !
original MNIST tutorial: https://www.tensorflow.org/datasets/keras_example
Szegedy et al. 2014, Going deeper with convolutions: https://arxiv.org/pdf/1409.4842.pdf!
# Imports and preprocessing
import fast_layers as fl
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.batch(128)
ds_test = ds_test.batch(128)
N_FILTERS = 16
PADDING = 'same'
inception_module = fl.Layer()
sequences = [
fl.Sequence('c1', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
]),
fl.Sequence('c1_c3', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING)
]),
fl.Sequence('c1_c5', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING)
]),
fl.Sequence('maxpool3_c1', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
]),
fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'],
is_output_layer=True,
sequence=[
tf.keras.layers.Concatenate(axis=-1)])
]
inception_module.init_layer(sequences)
# A Layer can also be called like this:
sequences_2 = [
fl.Sequence('c1', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
]),
fl.Sequence('c1_c3', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING)
]),
fl.Sequence('c1_c5', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING)
]),
fl.Sequence('maxpool3_c1', 'input', sequence = [
tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING),
tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
]),
fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'],
is_output_layer=True,
sequence=[
tf.keras.layers.Concatenate(axis=-1)])
]
inception_module_2 = fl.Layer(sequence = sequences_2)
# Create and train the model
model = tf.keras.models.Sequential([
inception_module,
inception_module_2,
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
history = model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
verbose=2
)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fast_layers-0.1.7.tar.gz
.
File metadata
- Download URL: fast_layers-0.1.7.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17e91eea7d72dbf40b9263e38604cfe80b3beeb1bbd958ebe55b97afaf9e303d |
|
MD5 | 175a222ddeaaa3e64517347e083f5aa9 |
|
BLAKE2b-256 | c898824e93fc1da083102ed27e098b99bd584ec292a4d56ee079160c743dc2e8 |
File details
Details for the file fast_layers-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: fast_layers-0.1.7-py3-none-any.whl
- Upload date:
- Size: 6.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af5231538a5a0270a6dc25283c236ca652cac66a2eff86dbc9dfc9ee426a5097 |
|
MD5 | 4f76969d5784f5bc9415cc3190bf2066 |
|
BLAKE2b-256 | 4d8da1b06febe7a0b9b96fe7821e0b3398940deb77f6a705fff00ecd669d70ee |