Skip to main content

Fast and full-featured Matrix Market file I/O

Project description

PyPI version

Fast and full-featured Matrix Market file I/O package for Python.

Fastest way to read and write any Matrix Market .mtx file into a dense ndarray, sparse coordinate (triplet) arrays, or SciPy sparse matrix.

Implemented as a Python binding of the C++ fast_matrix_market library.

pip install fast_matrix_market

Usage

import fast_matrix_market as fmm

Read as scipy sparse matrix

>>> a = fmm.mmread("eye3.mtx")
>>> a
<3x3 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
>>> print(a)
(0, 0)	1.0
(1, 1)	1.0
(2, 2)	1.0

Read as raw coordinate/triplet arrays

>>> (data, (rows, cols)), shape = fmm.read_coo("eye3.mtx")
>>> rows, cols, data
(array([0, 1, 2], dtype=int32), array([0, 1, 2], dtype=int32), array([1., 1., 1.]))

Read as dense ndarray

>>> a = fmm.read_array("eye3.mtx")
>>> a
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Write any of the above to a file

>>> fmm.mmwrite("matrix_out.mtx", a)

Write to streams (read from streams too)

>>> bio = io.BytesIO()
>>> fmm.mmwrite(bio, a)

Read only the header

>>> header = fmm.read_header("eye3.mtx")
header(shape=(3, 3), nnz=3, comment="3-by-3 identity matrix", object="matrix", format="coordinate", field="real", symmetry="general")

>>> header.shape
(3, 3)

>>> header.to_dict()
{'shape': (3, 3), 'nnz': 3, 'comment': '3-by-3 identity matrix', 'object': 'matrix', 'format': 'coordinate', 'field': 'real', 'symmetry': 'general'}

Note: SciPy is only a runtime dependency for the mmread and mmwrite methods. All others depend only on NumPy.

Compared to scipy.io.mmread()

The fast_matrix_market.mmread() and mmwrite() methods are direct replacements for their respective SciPy versions. Compared to SciPy v1.10.0:

  • Significant performance boost

    read write

    All cores on the system are used by default, use the parallelism argument to override. SciPy's routines are single-threaded.

  • 64-bit indices, but only if the matrix dimensions require it.

    scipy.io.mmread() crashes on large matrices (dimensions > 231) because it uses 32-bit indices on most platforms.

  • Directly write CSC/CSR matrices with no COO intermediary.

  • longdouble
    Read and write longdouble/longcomplex values for more floating-point precision on platforms that support it (e.g. 80-bit floats).

    Just pass long_type=True argument to any read method to use longdouble arrays. SciPy can write longdouble matrices but reads use double precision.

    Note: Many platforms do not offer any precision greater than double even if the longdouble type exists. On those platforms longdouble == double so check your Numpy for support. As of writing only Linux tends to have longdouble > double.

  • Vector files
    Read 1D vector files. scipy.io.mmread() throws a ValueError.

Differences

  • If no symmetry is specified scipy.io.mmwrite will search the matrix for one. This is a very slow process that significantly impacts writing time for all matrices, including non-symmetric ones. It can be disabled by setting symmetry="general", but that is easily forgotten. fast_matrix_market.mmwrite() only looks for symmetries if the find_symmetry=True argument is passed.
  • precision argument to mmwrite() is currently ignored. Floats may be written with more precision than desired.

Quick way to try

Replace scipy.io.mmread with fast_matrix_market.mmread to quickly see if your scripts would benefit from a refactor:

import scipy.io
import fast_matrix_market as fmm

scipy.io.mmread = fmm.mmread
scipy.io.mmwrite = fmm.mmwrite

Dependencies

  • No dependencies to read/write MatrixMarket headers.
  • numpy to read/write arrays (i.e. read_array() and read_coo()). SciPy is not required.
  • scipy to read/write scipy.sparse sparse matrices (i.e. read_scipy() and mmread()).

Development

This Python binding is implemented using pybind11 and built with scikit-build.

All code is in the python/ directory. If you make any changes simply install the package directory to build it:

pip install python/ -v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast-matrix-market-1.4.0.tar.gz (49.7 kB view details)

Uploaded Source

Built Distributions

fast_matrix_market-1.4.0-pp39-pypy39_pp73-win_amd64.whl (262.3 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (539.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.0-pp38-pypy38_pp73-win_amd64.whl (261.9 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (539.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.0-pp37-pypy37_pp73-win_amd64.whl (262.0 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (539.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.0-cp311-cp311-win_amd64.whl (262.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

fast_matrix_market-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-cp311-cp311-macosx_11_0_arm64.whl (512.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fast_matrix_market-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (539.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fast_matrix_market-1.4.0-cp310-cp310-win_amd64.whl (262.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

fast_matrix_market-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (540.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-cp310-cp310-macosx_11_0_arm64.whl (512.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fast_matrix_market-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (539.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fast_matrix_market-1.4.0-cp39-cp39-win_amd64.whl (262.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

fast_matrix_market-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (512.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fast_matrix_market-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (539.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fast_matrix_market-1.4.0-cp38-cp38-win_amd64.whl (262.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

fast_matrix_market-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (540.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-cp38-cp38-macosx_11_0_arm64.whl (512.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fast_matrix_market-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl (539.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fast_matrix_market-1.4.0-cp37-cp37m-win_amd64.whl (263.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

fast_matrix_market-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (547.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (536.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fast-matrix-market-1.4.0.tar.gz.

File metadata

  • Download URL: fast-matrix-market-1.4.0.tar.gz
  • Upload date:
  • Size: 49.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fast-matrix-market-1.4.0.tar.gz
Algorithm Hash digest
SHA256 bc520a1298877367e2a529828facdf7840d8c0174ff801cb4dbb422c16af9583
MD5 8a09d5236f6792767615f557f3241668
BLAKE2b-256 7062efb98858d53cc754de3ffff11d4ec91fcec579a57c59a0e2733be6b46d43

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7738bbc63f5e4f9759b217f33c6ba46a4a1495a1c13605daa1af8c35e86a572d
MD5 3a4a317d7f99297606f21827ac624fb9
BLAKE2b-256 823e6748671897d6e35c19e9d34805e0fe1e8e7d32d40ef731b9c8e8811068f5

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bf19fcde442b1856797eea1dc79e3011ef2d8768f08e87932d4f483bea0e96b
MD5 cca2f6b33cb123ac5c0dd046ec5bbf43
BLAKE2b-256 6cda4f5d16e034018bdf58389d5d77fc41348e35b1d240a727f144257514bbc4

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19abaadd8f5616bc92876d25777a44e6da9c3eb45944da334c40b47cda971988
MD5 924e5544ab0084d4626712a6649b76a3
BLAKE2b-256 c851b4f8fc96ba96d44315b3f173ddb5f4b16a49213914b6fd0cb74d8a806d60

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fa597485e2f5241a2985bcd3cb6781c309dab715db1a8f9aefdedb2d853d4a23
MD5 668b848c161e747b64106dfc32a05b9a
BLAKE2b-256 6f74fad9067fd44129634b3894042eb3179cd414fa8c0e40160c0e709c109fd8

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a53ae5700a50480b885186634b9bf0b293aa48b1ad4cfc7a2297ab5d6f4a6ba
MD5 83e0227adc72ac145b0790a48fe737c6
BLAKE2b-256 5764e13509b7e976014119d00ffe38e462a5f89793f582e1b33619804993653c

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64e80d642770ee85c112c6421a924fce2571170b95c58cc7db062a937b6f5c85
MD5 f4a40d721eaf4df60b4976f4bc1d3cc4
BLAKE2b-256 d6a7d3d8cc903a75da9834fcc668671487e39a5bf29358e90aabc4f14ed6af0f

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 790eef62ae312165063a5a9989335fcce2ae37bf0c3596c246917195cdb253c4
MD5 4a8c6933fbb42c86463c149e8352000e
BLAKE2b-256 6aa01a8547478531e6ac8fef3c8966464dfdc512ee8145f2d1c7ee2a45675b69

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e171fd80d40374c0cdc4cc8caeca4d4bfd92e6e5983bc7d8841f9ec2e0017028
MD5 882147673035fea5e60db36ab35266e6
BLAKE2b-256 cd63b9626246230a83e520728c487633efb48b5bc2dcc7a6154401babe00c568

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3f499cb2ebb2a7593d560698d9719e137d2b86cf68f01341b6f2acba73ebfba
MD5 8848c37fd12a46030863e066d00c254d
BLAKE2b-256 40c3a7855de94c45ecd243d8c36e12c253dd92144e0c461b1341b11172c0b66e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 78b81d9581b89093311dff6c2289c609e962969bae977cb0cfc942d1dbef152a
MD5 320766fe5f3d3bba662d6cb96b90d4f2
BLAKE2b-256 fff2a35e71bf289c24596da8730b7cae653d1912cf4122d2bb6088093bc54efe

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 184ff81f9f329b092a99807085381ed3cb2ea70b408e8c3bee79b7d1b47311dd
MD5 ded9ec9da55215fa794cba7be22df02b
BLAKE2b-256 d491b359e495ce21fca881b4bc4708bf0612e49814192dff9cd8623e1a055ced

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21a51733c4e11e8a8e572915904839408108d2e21fc9db9b9f01d37263f8e3dd
MD5 914554e30c62fd0516a938a670a1e732
BLAKE2b-256 415604337eee433da62cdc2e4efa3464d0db744bba26bfde82cd7509987cc07a

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e61988125fec432d4347588f2ea73d3911362805132f84fd37bdde20cc568ce5
MD5 cfd67dfd46685a8121554e6412c9fe7a
BLAKE2b-256 9160553d9c2ffb24330260294c8b25e10faee6b0e996b59a8af1823b48b9333e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2c560f8363299d31064a0a7e2537a26d829c99e6e72827032eb58b73773f15d
MD5 09849dbf018305e5936e5a06aa8f01c7
BLAKE2b-256 70885d78548db59d380acc97f2e27f0ce7aba693b46ac03bad121af5f43755a3

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b524b3620fa4f42e031d8c1320a40ddee90503c7ec5bb7e2bb2e03274aa44576
MD5 231bbac33823fa4d6394b1c8f2fe9201
BLAKE2b-256 883b4918e69fd1cf272d9020b973910d82abd9394540b2f1055ad2b8c485f04a

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4052dd600f3d1d0b42189a1878d37422d4c4575f4667b34330a594b0645f0b42
MD5 dd2870688e59901e6437a7470ca1b673
BLAKE2b-256 aee62684fc4725fe0db78065caf78582199808783258f88673fcf4a9878be83c

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d274c80364f7ab17c6794b063a3f87d0005c3086b5e257fdec6755d9efc861dc
MD5 a9bde7e074cfdce8c04462d87d956898
BLAKE2b-256 363ed658ffef4c86cb39eca6beb61696d6a8b6e3dbb71b81d6c89ee7c64f99f5

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3653f84de3ebe0acd7f6bbb53c6f6ed793f0604cd32ba198892cd1c0e60dd468
MD5 410b784b85a40fdee9fffaeb412b8045
BLAKE2b-256 30ae0dd1762f12d0be80c499b2f6bcc0d13a14a8158f5b96235a79789c4fc760

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3889049c5c58eca5d484422c7199d7a8c17c92816d2354eb48c9038999c2074
MD5 2f94115502db35db37842c9dd3ef7e4e
BLAKE2b-256 7fa38763416820e9dcbbaa6a6f61ff1566ef418bc668653d15fa38585233564e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 141dfc6a51b2a6fd1ccb9b41244064ed92d9c4d6cabaaf0282443cc68877a85e
MD5 0375262081c0120cff077c3b5b97313d
BLAKE2b-256 40d8600339628ef5ce1555978a1dce17c8c8590721bff40597f9b2b1f2970527

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d56d15e72021e4ce429fdcb2c1d15ec961a1ee4d06717316571f01f69ea9a3f8
MD5 3d40aa5dfaebbaa655b3c67f49c84d9d
BLAKE2b-256 f60c9d869a53a544ce0e7f31a190a9cbcca39ccd1c0914a55b372025fc043023

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f052ade2342e7f7ed973728db3de587f74cab427118030a0f8c6a32164a84478
MD5 69465b2f8c6d0708cda7ceaa2e90e198
BLAKE2b-256 ab936a0a1b345e0db331bd0d43cd2ef30dd046d2b448598331112baf34505ffc

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5e6f7f7fe3d3b79535f5ed1568bae678277d68c016737b03cc9a58521b1b947
MD5 d7d7fec011523c3729f2267f2e9bd6ad
BLAKE2b-256 3cabc415974e844dae2a3850296121b2c6d3957bdbd1b929c92030b52150b2c4

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b422896960b046e1e9e09286bb1071ad4c5775b35d2da5cb0a604b4da0eef2e2
MD5 ae90191b274cf4242a2f0d5b1b2800c9
BLAKE2b-256 919f8e4f36bdb7b976460e8793ae2257aa85ae7916bde533e5da551f44629091

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae6c2167b3f55f54975bab7fb241c3b4076386fb4baf0dad7f79348606fdd687
MD5 e44514257db3b5741761971e3a4bb066
BLAKE2b-256 18a8867f1ddf7eac4f081974264215869588521bee8ca997c8394197dd4d9b6d

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0c95f4c35e4d94c344afe273c4f1a0138abd6308955533b977dc69ad00cf768d
MD5 0e32c276bc7cb6cec562df42850a09ab
BLAKE2b-256 fc34347a52142d34c4ac47ded235606305e9a412582d32ee2d0fe83e3532b9a2

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23b731a1d3621980e11ca67d9f01b891d4ebdeab2668e0180d913d7904d0cedc
MD5 b89014103238364d33e47026ec8c1159
BLAKE2b-256 2d55d227ce93a911862bb59d2b08921e8993bf014bda36e3d4bba4666db636a5

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd89a54e33c0c712e63a9e78041a0a4d8c4e9b2e6b4bca03cab265a5805c7c24
MD5 ac55c35fd683bf3d152f820a84f0efd4
BLAKE2b-256 0122a30d4d172a16a1bc0bda78e4e8c2fe057a243f3521fe1a0d52aae2063333

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8df9b7fa29c509bf45d6c5a8cf6e83e013da3841d59cbb62afbf4f4892268bd
MD5 f4342b2cdb53c77bac957aa8e4c34d2c
BLAKE2b-256 d044d8cd2db94964b89f2e87a11e6ddba3f2febfb7aaefea9c4c6b43b2a3d200

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 741de8c4b51d666fedd7b4523eb5233270c48c36bf98180c6bd5008c8ed835fc
MD5 ac16178d2ba31576e7032c944c610c0d
BLAKE2b-256 0cd86e717ae79af432d4fef882b1ce49ec4a8554d7ddcd2a390a87056eb9aece

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 01c814140600c3e5f8b04dc6607331c42a6d395abf5fcf2401342a0c6d4f5374
MD5 991862e68b564d1e9e5833643123957d
BLAKE2b-256 0bdc415580ecb1083ad40c43f180ae5844aecd0005b24416921e972b60052de4

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c1bacab3b169f4e3af4437914e69b10dc4a4216a4b732bef7b1ed39c31168ca
MD5 606b50b6582c8d0c7aad064734584173
BLAKE2b-256 ecb4d6a0d78a3cfff5353ec28562306e50778ced9559f0be3413cf1347841191

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44de826fe81efb691c26d9d306731e90bbb340da81430a1185b21610daeb9a8c
MD5 e116209ce702c86a1e3255092d1e94fd
BLAKE2b-256 e2f3856522114de257fd1e8b5e0f459f6c3210d1ec6a8b7164a168697aa7a76a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page