Fast and full-featured Matrix Market file I/O
Project description
Fast and full-featured Matrix Market file I/O package for Python.
Fastest way to read and write any Matrix Market .mtx
file into a SciPy sparse matrix, sparse coordinate (triplet) arrays, or dense ndarray.
Implemented as a Python binding of the C++ fast_matrix_market library.
pip install fast_matrix_market
Compared to scipy.io.mmread()
The fast_matrix_market.mmread()
and mmwrite()
methods are direct replacements for their respective SciPy versions.
Compared to SciPy v1.10.0:
-
Significant performance boost
The bytes in the plot refer to MatrixMarket file length. All cores on the system are used by default, use the
parallelism
argument to override. SciPy's routines are single-threaded. -
64-bit indices, but only if the matrix dimensions require it.
scipy.io.mmread()
crashes on large matrices (dimensions > 231) because it uses 32-bit indices on most platforms. -
Directly write CSC/CSR matrices with no COO intermediary.
-
longdouble
Read and writelongdouble
/longcomplex
values for more floating-point precision on platforms that support it (e.g. 80-bit floats).Just pass
long_type=True
argument to any read method to uselongdouble
arrays. SciPy can writelongdouble
matrices but reads usedouble
precision.Note: Many platforms do not offer any precision greater than
double
even if thelongdouble
type exists. On those platformslongdouble == double
so check your Numpy for support. As of writing only Linux tends to havelongdouble > double
. -
Vector files
Read 1D vector files.scipy.io.mmread()
throws aValueError
.
Differences
scipy.io.mmwrite()
will search the matrix for symmetry if thesymmetry
argument is not specified. This is a very slow process that significantly impacts writing time for all matrices, including non-symmetric ones. It can be disabled by settingsymmetry="general"
, but that is easily forgotten.fast_matrix_market.mmwrite()
only looks for symmetries if thefind_symmetry=True
argument is passed.
Usage
import fast_matrix_market as fmm
Read as scipy sparse matrix
>>> a = fmm.mmread("eye3.mtx")
>>> a
<3x3 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
>>> print(a)
(0, 0) 1.0
(1, 1) 1.0
(2, 2) 1.0
Read as raw coordinate/triplet arrays
>>> (data, (rows, cols)), shape = fmm.read_coo("eye3.mtx")
>>> rows, cols, data
(array([0, 1, 2], dtype=int32), array([0, 1, 2], dtype=int32), array([1., 1., 1.]))
Read as dense ndarray
>>> a = fmm.read_array("eye3.mtx")
>>> a
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
Write any of the above to a file
>>> fmm.mmwrite("matrix_out.mtx", a)
Write to streams (read from streams too)
>>> bio = io.BytesIO()
>>> fmm.mmwrite(bio, a)
Read only the header
>>> header = fmm.read_header("eye3.mtx")
header(shape=(3, 3), nnz=3, comment="3-by-3 identity matrix", object="matrix", format="coordinate", field="real", symmetry="general")
>>> header.shape
(3, 3)
>>> header.to_dict()
{'shape': (3, 3), 'nnz': 3, 'comment': '3-by-3 identity matrix', 'object': 'matrix', 'format': 'coordinate', 'field': 'real', 'symmetry': 'general'}
Note: SciPy is only a runtime dependency for the mmread
and mmwrite
methods. All others depend only on NumPy.
Quick way to try
Replace scipy.io.mmread
with fast_matrix_market.mmread
to quickly see if your scripts would benefit from a refactor:
import scipy.io
import fast_matrix_market as fmm
scipy.io.mmread = fmm.mmread
scipy.io.mmwrite = fmm.mmwrite
Dependencies
- No dependencies to read/write MatrixMarket headers (i.e.
read_header()
,mminfo()
). numpy
to read/write arrays (i.e.read_array()
andread_coo()
). SciPy is not required.scipy
to read/writescipy.sparse
sparse matrices (i.e.read_scipy()
andmmread()
).
Neither numpy
nor scipy
are listed as package dependencies, and those packages are imported only by the methods that need them.
This means that you may use read_coo()
without having SciPy installed.
Development
This Python binding is implemented using pybind11 and built with scikit-build-core.
All code is in the python/ directory. If you make any changes simply install the package directory to build it:
pip install python/ -v
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file fast-matrix-market-1.4.5.tar.gz
.
File metadata
- Download URL: fast-matrix-market-1.4.5.tar.gz
- Upload date:
- Size: 299.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 578745f0784f4dc8e123bf931e53fdebe77feb897cc3f87f86a1a8162fa418ba |
|
MD5 | 1392b27cd0588989119e6070ff8396fc |
|
BLAKE2b-256 | 24ed4a39338b41264a9d54539ef1f0358a0a4dca24f0588e8018817d05e6ae01 |
File details
Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp39-pypy39_pp73-win_amd64.whl
- Upload date:
- Size: 514.8 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 829062d4678ef7a397a54f60a398426cb82f977c57aa8fd574c7b6f278fb467d |
|
MD5 | 9fdec7edec38a54fea69ce80702f9015 |
|
BLAKE2b-256 | 3868fb7e9d9f658694337107507ea69553f8986317be208f9537547527c73f58 |
File details
Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 635.5 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30c27f2a04c7d940c50f9c6ae29ad4a0c395b641300a487a25aa3c01f43a17a8 |
|
MD5 | e655b987c62b48ccc8e862031ce9face |
|
BLAKE2b-256 | 2ab5fe19a31e0fbb29d2f784e438fbd546e68b963e20403697f7b4cd38758770 |
File details
Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 605.1 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c0ddf72fadc4bce5e6e79b7a0816ba97fc73916ddfe21a61b10d7d1be4c29a5 |
|
MD5 | 3f9cfb576711ade77ae2453a59e20ac0 |
|
BLAKE2b-256 | 2e0b8e31ff43aa8f0574e326482542129903ad1f33b160461740ffff48735419 |
File details
Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp38-pypy38_pp73-win_amd64.whl
- Upload date:
- Size: 514.4 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 678993968e86014642ccb7ec96519cce2046f6bc8ea496ac88fbfa4a8b5d2f77 |
|
MD5 | 9ff5670a8890c52a9c0013d87cd2ab85 |
|
BLAKE2b-256 | d060f5af4004c19da360e6e673ff929c6ad3afa9cf66d056b2154c8e3059f99a |
File details
Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 635.7 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d41a7f6b6e5ff152a8b80754428f09b78686385938996ee9c0a9994f8a2d10c9 |
|
MD5 | e634ed3caec8d222e9afa486ecf30dec |
|
BLAKE2b-256 | ca39f481c244a23bd3377ec904aa4d3cda3b7ee4bcef034ac277dca27ab444a8 |
File details
Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 605.1 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 654ae3b84c728400773129b5d84d105a25eded2f13d4515350857750d8c9f30a |
|
MD5 | d42b1dbe8b4d4f53eeda49157e4c288c |
|
BLAKE2b-256 | 3098db4fd8ee84e507e143b9f9799d947f356517aa949aa7c0280e969e9014d2 |
File details
Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp37-pypy37_pp73-win_amd64.whl
- Upload date:
- Size: 514.6 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f96b65124b066cc98fd13737da0bef89df1b24a3aa0007d11fdbdd53d8ff0268 |
|
MD5 | 4da9766770f5045b80e580c03deeaa7e |
|
BLAKE2b-256 | 1d853de2334c0fd5f0cba12a48d00a4fec4c6b4798275f3858fb8f60ecd8680d |
File details
Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 635.6 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2f498cac1931f9b3a733dc39379cac588cf9cc16e17b9d8d78bb83264b914e7 |
|
MD5 | 000435cdd723d9d0379d9fe9f8a55aa1 |
|
BLAKE2b-256 | 81f4116a16de4c9e40b2d4ce7bff1567cc48b672ffe154b1623e9f45c3be1e18 |
File details
Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 604.6 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 014b2c234371a06b5287f3b48f3cf94b60d7fede6a0447498d9c1125799ebba7 |
|
MD5 | b4aa86970ec2b9fbc05d3694c2182d4b |
|
BLAKE2b-256 | 8dcf5b6d02695905ec447fe4a825e130f073a9158b50663d68a7d55a981f5a32 |
File details
Details for the file fast_matrix_market-1.4.5-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 515.6 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35d7cd9ebae3823b38f970f49db7fd7dfb8ad3abc688c67da4abf0c17bbea5ca |
|
MD5 | 8cf1d794e7fc13e72745201efcacfb80 |
|
BLAKE2b-256 | 9fefbc8681868e2e505ccaca4979769d92ef93ba7e988abf88e0f2962e4893fb |
File details
Details for the file fast_matrix_market-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0565f0321cfa788d75b52bdfe2737e04b9cb6dbb6249fff45759b07c37e9a6d7 |
|
MD5 | d750ea4616ae6c1d484336d263134c58 |
|
BLAKE2b-256 | fd8724957a1ffb1165953493ca26415b90f18be524e8476a3d4f5f5eb6a61beb |
File details
Details for the file fast_matrix_market-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 634.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | faed0400e2dd5ed3ec25d2812c319d58e0f19ebcbead979ee36c327f0f5d4e4b |
|
MD5 | 1b283181a1d7bcce4140b172a52dd329 |
|
BLAKE2b-256 | 572c7488102c712caed381907bc106ff2843c62b5f1c26e56553fe3d06345744 |
File details
Details for the file fast_matrix_market-1.4.5-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 580.5 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a52a6f2422e677063be94e9037d306deb0cd175683463061544b410c9521b9b2 |
|
MD5 | 67a3133b06f1644e569498c976cf3ca6 |
|
BLAKE2b-256 | 6b4ad153ae4d2aa8ac1cf2f5de16272f3ecfef4a326ecfbd6a860602d106fefb |
File details
Details for the file fast_matrix_market-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 605.0 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e9081808a58183983a4adc7d0fdf039da7df708c0be8ad34bdde9564ba5816c |
|
MD5 | ac48c19f6a9e7bbdefe15b29932b08c6 |
|
BLAKE2b-256 | f983d37d445e0d284e3a85585fc7ae1edaca3177882c9c6d268d0fe2fbc3c578 |
File details
Details for the file fast_matrix_market-1.4.5-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 515.4 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d5538979dec24ce12c26a8045c79916e41063e5d30b6e9299e567265a57f857 |
|
MD5 | c806a231569aa703eb48ae2c4f41e521 |
|
BLAKE2b-256 | 15dd5318eeca02bf69408f4cd90c4be7cc5fd4ac53430827587fa3c46a05ccbc |
File details
Details for the file fast_matrix_market-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac2e37fd413f1a4bcff4c5b129e82beb74b48d77f96a9a9e5dce2207bc945c39 |
|
MD5 | 5971442ad0cd02b6dba6f3d8574786a5 |
|
BLAKE2b-256 | c40a6d4e5d429e95642d5c04ebabd9d9a37617d2e96a40a3ad8f380135c4646f |
File details
Details for the file fast_matrix_market-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 634.7 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e9713e961a044e34e127494421d3d12d27464aca4541483a958d02e05fd6c84 |
|
MD5 | 97cc8796c76f40c89d5a9fd9b0bf8b9c |
|
BLAKE2b-256 | e24a6d82dbe463501d89d5e059815816d7d6ce9d67b04a80727daf127568c61e |
File details
Details for the file fast_matrix_market-1.4.5-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 580.5 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8beba870ebb23be933e8b7823cc9695bdbaa8c0e58040f7e222b3f678fe74602 |
|
MD5 | 173c7692cebe76208af0359e6918bf6a |
|
BLAKE2b-256 | b735cb2708a9a5556a7a2ce8743505823dad13736864dca1f1b160fe656e25a7 |
File details
Details for the file fast_matrix_market-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 605.0 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c25e286462858e6b7123c01f536839f09396bee4b7c47dcb03b5817bb59fe93 |
|
MD5 | b6da0004c3b51e6b8556f819cb55ca3e |
|
BLAKE2b-256 | 70edae2cfceabe78384c39ca51e041b0720cfdd95c095c87f17cc99870c02fd6 |
File details
Details for the file fast_matrix_market-1.4.5-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 512.3 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fe039bc8fb7ee833f7dae5c241ec8ed7cf91c67b7c44f716370fb8d93090fe7 |
|
MD5 | 866f82ab7a525fe04b7784a6da9cdfac |
|
BLAKE2b-256 | 261110903ceab7376f6ea8a431c290f6620c40c6b56ebfe6ff0d751d96b02c3c |
File details
Details for the file fast_matrix_market-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f21748593df94f684747e900b31c3b1be0d3a35ae90f629c6f9a3e3dae89cbe |
|
MD5 | 63a4e61cacf6d6b9cdcf1c6d50c1a6f1 |
|
BLAKE2b-256 | 892ee14563ceda7cc6e315e092e3e299ca2f689c07d8c49040f5a19dc7de0ba1 |
File details
Details for the file fast_matrix_market-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 634.8 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b84f231050383e853746b9cb70de3d0d5a4fba6cb74902e0f2f8746f5006f3d |
|
MD5 | 6e8879ad976866043456af7dd9cd1581 |
|
BLAKE2b-256 | d3ef1fcae90998cf637841f252e68bf2486be9e548129e947c702594d922c8d9 |
File details
Details for the file fast_matrix_market-1.4.5-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 580.7 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52a929ba2bc18f4390610a6f8fbde089c59c0594629a84560d01e0bb9452e8de |
|
MD5 | 23fc668b5ef2c73bfa8175216cd4ebd4 |
|
BLAKE2b-256 | 3ca0d53e829b44448eeafb5bfa2e5fc3b3f88598bf82de5a3e5651d002d07a12 |
File details
Details for the file fast_matrix_market-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 605.0 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25c228065f219cfa8b4c0de21f606da18cb2e5c663373fcedf84252e32ac00bc |
|
MD5 | 8aa288339c9d58d6de5f2310d99d2443 |
|
BLAKE2b-256 | bcaeefdea9a17b73a7428c711fa1a3dc0d9732a0de11e12e8754d0e896e8857d |
File details
Details for the file fast_matrix_market-1.4.5-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 515.4 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 514d693a290074467bbbfc9af249ddcc616b916ad84f9ec3650e406722afcfb9 |
|
MD5 | 44f9890cfe6cd4c0637666e5b168a8e0 |
|
BLAKE2b-256 | 8ffa5f0bb2ab9d660d9b0610aac37d389a901a178fff45848f5c4ab3dbd3baea |
File details
Details for the file fast_matrix_market-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45fa2fb7765969019ff3ed86d9f4f24a63c4f4f1d63df8e217e180e5cc30670a |
|
MD5 | dc0f14f2cb0c87eacc0409543e76c036 |
|
BLAKE2b-256 | 4970f26cc7fe67aa5b566970fb9a6a7caae28031779e71b6eebcf0a5dddb8db7 |
File details
Details for the file fast_matrix_market-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 634.6 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68ae5e728a9aee8d2c299df2e33e89b1bb1b600daa8b4203716de53b4bee2b74 |
|
MD5 | beebc2824b9b068600843500ec9d1c4f |
|
BLAKE2b-256 | fb5653e6e8677dff7f2d7fb91662b9d2c325a65d7df0676dbb402f9499233038 |
File details
Details for the file fast_matrix_market-1.4.5-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 580.5 kB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab8dbf883d475fad7c2ac18bc94303f6d73f4c0cddffc3223fd79adfb9d6977e |
|
MD5 | 42b32907fa958417f0f650a896c44a82 |
|
BLAKE2b-256 | fb591f54e5365f388298094e1f91ab755a1b04f6452c565f2d636d451bf81254 |
File details
Details for the file fast_matrix_market-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 604.9 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1dbb49f64d53d918a174899005e45772387fdb23c6c6d1c95587e5d4c32a34d3 |
|
MD5 | 2b7b4f6a6aa04c7276fe3144006c2a27 |
|
BLAKE2b-256 | 9e55a31479f6bdc827aa3a4d81246c799b9b50947f5cf4d4398f545a7ffad155 |
File details
Details for the file fast_matrix_market-1.4.5-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 516.1 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 406cfd95f1a2a18a4f480cd98fe923e8a70365bfc0a6d742e820f42c51b21a04 |
|
MD5 | 486db2483f7d3cde593ec778b939be94 |
|
BLAKE2b-256 | 2e894884d089c031c288aa6513ab544fe011c6d8d522a2e2d8d92e74bb62842b |
File details
Details for the file fast_matrix_market-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.1 MB
- Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20477b369ede955a7da68244d64c10dc0d02ebd9e817a99e8d632de03d97107f |
|
MD5 | 7670749a6c269c9b3b1d414542fa313c |
|
BLAKE2b-256 | 1b8d2e130047c5e0c4a4629b672f8be1284adb1f9d8f5a6ffb1ec8fd3caf2d66 |
File details
Details for the file fast_matrix_market-1.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 636.9 kB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0d7f86f163279507e91c18f1557279a4ed329691582e16e55e0d49b1bb7d38d |
|
MD5 | dea685e6b69cf71b6503adbc3aaa09cc |
|
BLAKE2b-256 | 8875166c2ed53322fa7e85667ee92682521e0dfff9f0bb87ccbb1e2bf47e3fef |
File details
Details for the file fast_matrix_market-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: fast_matrix_market-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 602.5 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e84d6a5685bc265d0303bd1fe382be96c597d5885a7327d294b832c59e96543 |
|
MD5 | 7dd8c8eeb02a964602f7a9b772dc84e9 |
|
BLAKE2b-256 | f56c719e45031e230f4e750efb087900c37536a765116a47311c34fb111e5059 |