Skip to main content

Fast and full-featured Matrix Market file I/O

Project description

PyPI version

Fast and full-featured Matrix Market file I/O package for Python.

Fastest way to read and write any Matrix Market .mtx file into a SciPy sparse matrix, sparse coordinate (triplet) arrays, or dense ndarray.

Implemented as a Python binding of the C++ fast_matrix_market library.

pip install fast_matrix_market

Compared to scipy.io.mmread()

The fast_matrix_market.mmread() and mmwrite() methods are direct replacements for their respective SciPy versions. Compared to SciPy v1.10.0:

  • Significant performance boost

    read speedup over SciPy write speedup over SciPy

    The bytes in the plot refer to MatrixMarket file length. All cores on the system are used by default, use the parallelism argument to override. SciPy's routines are single-threaded.

  • 64-bit indices, but only if the matrix dimensions require it.

    scipy.io.mmread() crashes on large matrices (dimensions > 231) because it uses 32-bit indices on most platforms.

  • Directly write CSC/CSR matrices with no COO intermediary.

  • longdouble
    Read and write longdouble/longcomplex values for more floating-point precision on platforms that support it (e.g. 80-bit floats).

    Just pass long_type=True argument to any read method to use longdouble arrays. SciPy can write longdouble matrices but reads use double precision.

    Note: Many platforms do not offer any precision greater than double even if the longdouble type exists. On those platforms longdouble == double so check your Numpy for support. As of writing only Linux tends to have longdouble > double.

  • Vector files
    Read 1D vector files. scipy.io.mmread() throws a ValueError.

Differences

  • scipy.io.mmwrite() will search the matrix for symmetry if the symmetry argument is not specified. This is a very slow process that significantly impacts writing time for all matrices, including non-symmetric ones. It can be disabled by setting symmetry="general", but that is easily forgotten. fast_matrix_market.mmwrite() only looks for symmetries if the find_symmetry=True argument is passed.

Usage

import fast_matrix_market as fmm

Read as scipy sparse matrix

>>> a = fmm.mmread("eye3.mtx")
>>> a
<3x3 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
>>> print(a)
(0, 0)	1.0
(1, 1)	1.0
(2, 2)	1.0

Read as raw coordinate/triplet arrays

>>> (data, (rows, cols)), shape = fmm.read_coo("eye3.mtx")
>>> rows, cols, data
(array([0, 1, 2], dtype=int32), array([0, 1, 2], dtype=int32), array([1., 1., 1.]))

Read as dense ndarray

>>> a = fmm.read_array("eye3.mtx")
>>> a
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Write any of the above to a file

>>> fmm.mmwrite("matrix_out.mtx", a)

Write to streams (read from streams too)

>>> bio = io.BytesIO()
>>> fmm.mmwrite(bio, a)

Read only the header

>>> header = fmm.read_header("eye3.mtx")
header(shape=(3, 3), nnz=3, comment="3-by-3 identity matrix", object="matrix", format="coordinate", field="real", symmetry="general")

>>> header.shape
(3, 3)

>>> header.to_dict()
{'shape': (3, 3), 'nnz': 3, 'comment': '3-by-3 identity matrix', 'object': 'matrix', 'format': 'coordinate', 'field': 'real', 'symmetry': 'general'}

Note: SciPy is only a runtime dependency for the mmread and mmwrite methods. All others depend only on NumPy.

Quick way to try

Replace scipy.io.mmread with fast_matrix_market.mmread to quickly see if your scripts would benefit from a refactor:

import scipy.io
import fast_matrix_market as fmm

scipy.io.mmread = fmm.mmread
scipy.io.mmwrite = fmm.mmwrite

Dependencies

  • No dependencies to read/write MatrixMarket headers (i.e. read_header(), mminfo()).
  • numpy to read/write arrays (i.e. read_array() and read_coo()). SciPy is not required.
  • scipy to read/write scipy.sparse sparse matrices (i.e. read_scipy() and mmread()).

Neither numpy nor scipy are listed as package dependencies, and those packages are imported only by the methods that need them. This means that you may use read_coo() without having SciPy installed.

Development

This Python binding is implemented using pybind11 and built with scikit-build-core.

All code is in the python/ directory. If you make any changes simply install the package directory to build it:

pip install python/ -v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast-matrix-market-1.4.5.tar.gz (299.6 kB view details)

Uploaded Source

Built Distributions

fast_matrix_market-1.4.5-pp39-pypy39_pp73-win_amd64.whl (514.8 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (605.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.5-pp38-pypy38_pp73-win_amd64.whl (514.4 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (605.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.5-pp37-pypy37_pp73-win_amd64.whl (514.6 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (604.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.4.5-cp311-cp311-win_amd64.whl (515.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fast_matrix_market-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-cp311-cp311-macosx_11_0_arm64.whl (580.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fast_matrix_market-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl (605.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fast_matrix_market-1.4.5-cp310-cp310-win_amd64.whl (515.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

fast_matrix_market-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-cp310-cp310-macosx_11_0_arm64.whl (580.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fast_matrix_market-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl (605.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fast_matrix_market-1.4.5-cp39-cp39-win_amd64.whl (512.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fast_matrix_market-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-cp39-cp39-macosx_11_0_arm64.whl (580.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fast_matrix_market-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl (605.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fast_matrix_market-1.4.5-cp38-cp38-win_amd64.whl (515.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

fast_matrix_market-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (634.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-cp38-cp38-macosx_11_0_arm64.whl (580.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fast_matrix_market-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl (604.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fast_matrix_market-1.4.5-cp37-cp37m-win_amd64.whl (516.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

fast_matrix_market-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fast_matrix_market-1.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (636.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl (602.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fast-matrix-market-1.4.5.tar.gz.

File metadata

  • Download URL: fast-matrix-market-1.4.5.tar.gz
  • Upload date:
  • Size: 299.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fast-matrix-market-1.4.5.tar.gz
Algorithm Hash digest
SHA256 578745f0784f4dc8e123bf931e53fdebe77feb897cc3f87f86a1a8162fa418ba
MD5 1392b27cd0588989119e6070ff8396fc
BLAKE2b-256 24ed4a39338b41264a9d54539ef1f0358a0a4dca24f0588e8018817d05e6ae01

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 829062d4678ef7a397a54f60a398426cb82f977c57aa8fd574c7b6f278fb467d
MD5 9fdec7edec38a54fea69ce80702f9015
BLAKE2b-256 3868fb7e9d9f658694337107507ea69553f8986317be208f9537547527c73f58

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30c27f2a04c7d940c50f9c6ae29ad4a0c395b641300a487a25aa3c01f43a17a8
MD5 e655b987c62b48ccc8e862031ce9face
BLAKE2b-256 2ab5fe19a31e0fbb29d2f784e438fbd546e68b963e20403697f7b4cd38758770

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c0ddf72fadc4bce5e6e79b7a0816ba97fc73916ddfe21a61b10d7d1be4c29a5
MD5 3f9cfb576711ade77ae2453a59e20ac0
BLAKE2b-256 2e0b8e31ff43aa8f0574e326482542129903ad1f33b160461740ffff48735419

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 678993968e86014642ccb7ec96519cce2046f6bc8ea496ac88fbfa4a8b5d2f77
MD5 9ff5670a8890c52a9c0013d87cd2ab85
BLAKE2b-256 d060f5af4004c19da360e6e673ff929c6ad3afa9cf66d056b2154c8e3059f99a

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d41a7f6b6e5ff152a8b80754428f09b78686385938996ee9c0a9994f8a2d10c9
MD5 e634ed3caec8d222e9afa486ecf30dec
BLAKE2b-256 ca39f481c244a23bd3377ec904aa4d3cda3b7ee4bcef034ac277dca27ab444a8

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 654ae3b84c728400773129b5d84d105a25eded2f13d4515350857750d8c9f30a
MD5 d42b1dbe8b4d4f53eeda49157e4c288c
BLAKE2b-256 3098db4fd8ee84e507e143b9f9799d947f356517aa949aa7c0280e969e9014d2

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f96b65124b066cc98fd13737da0bef89df1b24a3aa0007d11fdbdd53d8ff0268
MD5 4da9766770f5045b80e580c03deeaa7e
BLAKE2b-256 1d853de2334c0fd5f0cba12a48d00a4fec4c6b4798275f3858fb8f60ecd8680d

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2f498cac1931f9b3a733dc39379cac588cf9cc16e17b9d8d78bb83264b914e7
MD5 000435cdd723d9d0379d9fe9f8a55aa1
BLAKE2b-256 81f4116a16de4c9e40b2d4ce7bff1567cc48b672ffe154b1623e9f45c3be1e18

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 014b2c234371a06b5287f3b48f3cf94b60d7fede6a0447498d9c1125799ebba7
MD5 b4aa86970ec2b9fbc05d3694c2182d4b
BLAKE2b-256 8dcf5b6d02695905ec447fe4a825e130f073a9158b50663d68a7d55a981f5a32

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 35d7cd9ebae3823b38f970f49db7fd7dfb8ad3abc688c67da4abf0c17bbea5ca
MD5 8cf1d794e7fc13e72745201efcacfb80
BLAKE2b-256 9fefbc8681868e2e505ccaca4979769d92ef93ba7e988abf88e0f2962e4893fb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0565f0321cfa788d75b52bdfe2737e04b9cb6dbb6249fff45759b07c37e9a6d7
MD5 d750ea4616ae6c1d484336d263134c58
BLAKE2b-256 fd8724957a1ffb1165953493ca26415b90f18be524e8476a3d4f5f5eb6a61beb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faed0400e2dd5ed3ec25d2812c319d58e0f19ebcbead979ee36c327f0f5d4e4b
MD5 1b283181a1d7bcce4140b172a52dd329
BLAKE2b-256 572c7488102c712caed381907bc106ff2843c62b5f1c26e56553fe3d06345744

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a52a6f2422e677063be94e9037d306deb0cd175683463061544b410c9521b9b2
MD5 67a3133b06f1644e569498c976cf3ca6
BLAKE2b-256 6b4ad153ae4d2aa8ac1cf2f5de16272f3ecfef4a326ecfbd6a860602d106fefb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e9081808a58183983a4adc7d0fdf039da7df708c0be8ad34bdde9564ba5816c
MD5 ac48c19f6a9e7bbdefe15b29932b08c6
BLAKE2b-256 f983d37d445e0d284e3a85585fc7ae1edaca3177882c9c6d268d0fe2fbc3c578

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d5538979dec24ce12c26a8045c79916e41063e5d30b6e9299e567265a57f857
MD5 c806a231569aa703eb48ae2c4f41e521
BLAKE2b-256 15dd5318eeca02bf69408f4cd90c4be7cc5fd4ac53430827587fa3c46a05ccbc

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac2e37fd413f1a4bcff4c5b129e82beb74b48d77f96a9a9e5dce2207bc945c39
MD5 5971442ad0cd02b6dba6f3d8574786a5
BLAKE2b-256 c40a6d4e5d429e95642d5c04ebabd9d9a37617d2e96a40a3ad8f380135c4646f

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e9713e961a044e34e127494421d3d12d27464aca4541483a958d02e05fd6c84
MD5 97cc8796c76f40c89d5a9fd9b0bf8b9c
BLAKE2b-256 e24a6d82dbe463501d89d5e059815816d7d6ce9d67b04a80727daf127568c61e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8beba870ebb23be933e8b7823cc9695bdbaa8c0e58040f7e222b3f678fe74602
MD5 173c7692cebe76208af0359e6918bf6a
BLAKE2b-256 b735cb2708a9a5556a7a2ce8743505823dad13736864dca1f1b160fe656e25a7

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c25e286462858e6b7123c01f536839f09396bee4b7c47dcb03b5817bb59fe93
MD5 b6da0004c3b51e6b8556f819cb55ca3e
BLAKE2b-256 70edae2cfceabe78384c39ca51e041b0720cfdd95c095c87f17cc99870c02fd6

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9fe039bc8fb7ee833f7dae5c241ec8ed7cf91c67b7c44f716370fb8d93090fe7
MD5 866f82ab7a525fe04b7784a6da9cdfac
BLAKE2b-256 261110903ceab7376f6ea8a431c290f6620c40c6b56ebfe6ff0d751d96b02c3c

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5f21748593df94f684747e900b31c3b1be0d3a35ae90f629c6f9a3e3dae89cbe
MD5 63a4e61cacf6d6b9cdcf1c6d50c1a6f1
BLAKE2b-256 892ee14563ceda7cc6e315e092e3e299ca2f689c07d8c49040f5a19dc7de0ba1

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b84f231050383e853746b9cb70de3d0d5a4fba6cb74902e0f2f8746f5006f3d
MD5 6e8879ad976866043456af7dd9cd1581
BLAKE2b-256 d3ef1fcae90998cf637841f252e68bf2486be9e548129e947c702594d922c8d9

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52a929ba2bc18f4390610a6f8fbde089c59c0594629a84560d01e0bb9452e8de
MD5 23fc668b5ef2c73bfa8175216cd4ebd4
BLAKE2b-256 3ca0d53e829b44448eeafb5bfa2e5fc3b3f88598bf82de5a3e5651d002d07a12

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 25c228065f219cfa8b4c0de21f606da18cb2e5c663373fcedf84252e32ac00bc
MD5 8aa288339c9d58d6de5f2310d99d2443
BLAKE2b-256 bcaeefdea9a17b73a7428c711fa1a3dc0d9732a0de11e12e8754d0e896e8857d

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 514d693a290074467bbbfc9af249ddcc616b916ad84f9ec3650e406722afcfb9
MD5 44f9890cfe6cd4c0637666e5b168a8e0
BLAKE2b-256 8ffa5f0bb2ab9d660d9b0610aac37d389a901a178fff45848f5c4ab3dbd3baea

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45fa2fb7765969019ff3ed86d9f4f24a63c4f4f1d63df8e217e180e5cc30670a
MD5 dc0f14f2cb0c87eacc0409543e76c036
BLAKE2b-256 4970f26cc7fe67aa5b566970fb9a6a7caae28031779e71b6eebcf0a5dddb8db7

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68ae5e728a9aee8d2c299df2e33e89b1bb1b600daa8b4203716de53b4bee2b74
MD5 beebc2824b9b068600843500ec9d1c4f
BLAKE2b-256 fb5653e6e8677dff7f2d7fb91662b9d2c325a65d7df0676dbb402f9499233038

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab8dbf883d475fad7c2ac18bc94303f6d73f4c0cddffc3223fd79adfb9d6977e
MD5 42b32907fa958417f0f650a896c44a82
BLAKE2b-256 fb591f54e5365f388298094e1f91ab755a1b04f6452c565f2d636d451bf81254

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1dbb49f64d53d918a174899005e45772387fdb23c6c6d1c95587e5d4c32a34d3
MD5 2b7b4f6a6aa04c7276fe3144006c2a27
BLAKE2b-256 9e55a31479f6bdc827aa3a4d81246c799b9b50947f5cf4d4398f545a7ffad155

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 406cfd95f1a2a18a4f480cd98fe923e8a70365bfc0a6d742e820f42c51b21a04
MD5 486db2483f7d3cde593ec778b939be94
BLAKE2b-256 2e894884d089c031c288aa6513ab544fe011c6d8d522a2e2d8d92e74bb62842b

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 20477b369ede955a7da68244d64c10dc0d02ebd9e817a99e8d632de03d97107f
MD5 7670749a6c269c9b3b1d414542fa313c
BLAKE2b-256 1b8d2e130047c5e0c4a4629b672f8be1284adb1f9d8f5a6ffb1ec8fd3caf2d66

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0d7f86f163279507e91c18f1557279a4ed329691582e16e55e0d49b1bb7d38d
MD5 dea685e6b69cf71b6503adbc3aaa09cc
BLAKE2b-256 8875166c2ed53322fa7e85667ee92682521e0dfff9f0bb87ccbb1e2bf47e3fef

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e84d6a5685bc265d0303bd1fe382be96c597d5885a7327d294b832c59e96543
MD5 7dd8c8eeb02a964602f7a9b772dc84e9
BLAKE2b-256 f56c719e45031e230f4e750efb087900c37536a765116a47311c34fb111e5059

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page