Skip to main content

Fast and full-featured Matrix Market file I/O

Project description

PyPI version Conda Version

Fast and full-featured Matrix Market file I/O package for Python.

Fastest way to read and write any Matrix Market .mtx file into a SciPy sparse matrix, sparse coordinate (triplet) arrays, or dense ndarray.

Implemented as a Python binding of the C++ fast_matrix_market library.

pip install fast_matrix_market
conda install fast_matrix_market

Compared to scipy.io.mmread()

The fast_matrix_market.mmread() and mmwrite() methods are direct replacements for their respective SciPy versions. Compared to SciPy v1.10.0:

  • Significant performance boost

    read speedup over SciPy write speedup over SciPy

    The bytes in the plot refer to MatrixMarket file length. All cores on the system are used by default, use the parallelism argument to override. SciPy's routines are single-threaded.

  • 64-bit indices, but only if the matrix dimensions require it.

    scipy.io.mmread() crashes on large matrices (dimensions > 231) because it uses 32-bit indices on most platforms.

  • Directly write CSC/CSR matrices with no COO intermediary.

  • longdouble
    Read and write longdouble/longcomplex values for more floating-point precision on platforms that support it (e.g. 80-bit floats).

    Just pass long_type=True argument to any read method to use longdouble arrays. SciPy can write longdouble matrices but reads use double precision.

    Note: Many platforms do not offer any precision greater than double even if the longdouble type exists. On those platforms longdouble == double so check your Numpy for support. As of writing only Linux tends to have longdouble > double.

  • Vector files
    Read 1D vector files. scipy.io.mmread() throws a ValueError.

Differences

  • scipy.io.mmwrite() will search the matrix for symmetry if the symmetry argument is not specified. This is a very slow process that significantly impacts writing time for all matrices, including non-symmetric ones. It can be disabled by setting symmetry="general", but that is easily forgotten. fast_matrix_market.mmwrite() only looks for symmetries if the find_symmetry=True argument is passed.

Usage

import fast_matrix_market as fmm

Read as scipy sparse matrix

>>> a = fmm.mmread("eye3.mtx")
>>> a
<3x3 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
>>> print(a)
(0, 0)	1.0
(1, 1)	1.0
(2, 2)	1.0

Read as raw coordinate/triplet arrays

>>> (data, (rows, cols)), shape = fmm.read_coo("eye3.mtx")
>>> rows, cols, data
(array([0, 1, 2], dtype=int32), array([0, 1, 2], dtype=int32), array([1., 1., 1.]))

Read as dense ndarray

>>> a = fmm.read_array("eye3.mtx")
>>> a
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Write any of the above to a file

>>> fmm.mmwrite("matrix_out.mtx", a)

Write to streams (read from streams too)

>>> bio = io.BytesIO()
>>> fmm.mmwrite(bio, a)

Read only the header

>>> header = fmm.read_header("eye3.mtx")
header(shape=(3, 3), nnz=3, comment="3-by-3 identity matrix", object="matrix", format="coordinate", field="real", symmetry="general")

>>> header.shape
(3, 3)

>>> header.to_dict()
{'shape': (3, 3), 'nnz': 3, 'comment': '3-by-3 identity matrix', 'object': 'matrix', 'format': 'coordinate', 'field': 'real', 'symmetry': 'general'}

Note: SciPy is only a runtime dependency for the mmread and mmwrite methods. All others depend only on NumPy.

Quick way to try

Replace scipy.io.mmread with fast_matrix_market.mmread to quickly see if your scripts would benefit from a refactor:

import scipy.io
import fast_matrix_market as fmm

scipy.io.mmread = fmm.mmread
scipy.io.mmwrite = fmm.mmwrite

Dependencies

  • No dependencies to read/write MatrixMarket headers (i.e. read_header(), mminfo()).
  • numpy to read/write arrays (i.e. read_array() and read_coo()). SciPy is not required.
  • scipy to read/write scipy.sparse sparse matrices (i.e. read_scipy() and mmread()).

Neither numpy nor scipy are listed as package dependencies, and those packages are imported only by the methods that need them. This means that you may use read_coo() without having SciPy installed.

Development

This Python binding is implemented using pybind11 and built with scikit-build-core.

All code is in the python/ directory. If you make any changes simply install the package directory to build it:

pip install python/ -v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast-matrix-market-1.6.0.tar.gz (303.7 kB view details)

Uploaded Source

Built Distributions

fast_matrix_market-1.6.0-pp39-pypy39_pp73-win_amd64.whl (598.7 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (622.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.6.0-pp38-pypy38_pp73-win_amd64.whl (598.3 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (622.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.6.0-pp37-pypy37_pp73-win_amd64.whl (598.4 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.6.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (621.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.6.0-cp311-cp311-win_amd64.whl (599.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

fast_matrix_market-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.6.0-cp311-cp311-macosx_11_0_arm64.whl (555.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fast_matrix_market-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl (621.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fast_matrix_market-1.6.0-cp310-cp310-win_amd64.whl (599.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

fast_matrix_market-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.6.0-cp310-cp310-macosx_11_0_arm64.whl (555.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fast_matrix_market-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl (621.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fast_matrix_market-1.6.0-cp39-cp39-win_amd64.whl (593.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fast_matrix_market-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (555.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fast_matrix_market-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl (621.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fast_matrix_market-1.6.0-cp38-cp38-win_amd64.whl (599.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

fast_matrix_market-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.6.0-cp38-cp38-macosx_11_0_arm64.whl (555.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fast_matrix_market-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl (621.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fast_matrix_market-1.6.0-cp37-cp37m-win_amd64.whl (598.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

fast_matrix_market-1.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fast_matrix_market-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (615.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fast-matrix-market-1.6.0.tar.gz.

File metadata

  • Download URL: fast-matrix-market-1.6.0.tar.gz
  • Upload date:
  • Size: 303.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for fast-matrix-market-1.6.0.tar.gz
Algorithm Hash digest
SHA256 7d8cdec3dcaf0738371c6b6169fe58b6172999e0eeaf4ceb98f4252dc47d5d99
MD5 6e823f88ca265e92db89cff31070a972
BLAKE2b-256 9fdc7c9a8f7a572bf462922b74836023bbf3281705a8a586b7748c244a187ecf

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c9a85215a522a7eddcbf6f17424d466dfae483d281244fb39ba20f32ffa411af
MD5 eb5891aac715bfddae3627ea9af70f2f
BLAKE2b-256 71a0b75f7cc197b3d7923314bf18a9751f2a2b2eed40c8646c61e50f03adc794

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d480304f5efe14c6e5f68d44b407fb31c078a4c4bd29624ab3fa63d25aaac2d5
MD5 672e9aab13f9078dff242c478853bb4c
BLAKE2b-256 5b3e37b879eb76dc516e53551b094d658f04e67af524277bfc9a254a2bc75050

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b82a7371cf3f0717afdbf0594ae81883bc8f931c2c9b4c0e8d41a5f1737984c
MD5 b9c710e62ca110b1c835e6caba96d005
BLAKE2b-256 867076ca3e77fcf2264fa272f2a9a926fe1acbfc3e243e1362730745e975d93b

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9bdf09733226a3fd862886b1ef4ab4e0bdc962c25fd899325ddabb0377ee0f60
MD5 6b1f3b0ea969a2617c1ac2f33115ec81
BLAKE2b-256 29a806d0af3a1458dea2c29d0521a5f9048b8743ccde2024bdf22a13ed1b6af3

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c5db36135e57efe963c5e1d678f690a47b667461cfca345990ac29f17cab5fb
MD5 00df16b22c28b62ac2eb368506e1ed75
BLAKE2b-256 64c8e91e601c4c9b3177d0dee7be8bf38c487741d18c0903c286e54ad34dd198

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3825768e5b17e021289e4113a15f1c5cf5f18c62bbc1e03ce0158ba836023ec
MD5 addbf070a64c01370d1ee43a7675253a
BLAKE2b-256 2d42a71daede5570fd89cd4bcb45bf74999c8344f03a7394d0c5be2b36701284

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 56786224c65f1ae86d7d6da4760bc8564fb36aae9c29c6e3ca12d4d0d4ad7105
MD5 8a61977b1b6957009cdb23b20904d3c6
BLAKE2b-256 90c5c4762e5f480536c03526413ce0797bdaf54240ba27c64ce1af2805636969

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc845bf507d6851b8f401644b7935467a51e9e167cc24bca0300e2e1536dd705
MD5 fe3b98e2de058e812874278fec44b28e
BLAKE2b-256 d515659994ab5b2c7a446035169bf310939b0aaf1beb05f9e875cb255197093d

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fda215d44e1cf0ee94da8d674fcb2a72f54be8cf4e04b507cbd68a60ee70cf9
MD5 33a70e8ab88f427570a699c7ac9c141a
BLAKE2b-256 9a30b84b78e6d3b8bf9ffd6fd3d352b3a4de82bf0e5490784a6a611376c92fcd

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eb71388dd9fa68ca78c98e623550a1096700a8933fab8549b48a216371147eb2
MD5 4436e64ae2aa2ef9eb64e37ebb995687
BLAKE2b-256 cfb896baff5dbf42e786a04a58979cca1b0ed4f1a3a9f3adda83bc816f086781

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7021734b15c3ef4b213a15d71b51226ba3e954598ba604a2e692e86ba73cfcf8
MD5 62b041b766f01742aa62dec0e0571fe1
BLAKE2b-256 667267962ba3bd9c98b0b87e77dd0793eb61f1be4c5242d0ff7562f6badecfe8

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 193daf37815fc1ae6156e9cc113705809107afa42db4ba18886853def732ce2e
MD5 26ad87be77d39736f731ccb990c57aac
BLAKE2b-256 bdf4826359bd4a59f25e00a38bfaa5735a44aebf5e246a06e86b46f9f7026a27

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1e7bece9e49b1f9a153a95c7dde34bf2148e086e9bb29a2caaa3ffcab2d5705
MD5 1316fe58c6c84e7fb5bd544856fac4b2
BLAKE2b-256 34ecedb0e7a78bdf2e7dce1ffe066730ad8c995faf7cb4b88ce14080eb56be22

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 007f76c56b6692041cd1f1500f57cba9219aa84d4d51b46ed18b5ab5f0399789
MD5 c43493a6031bbd5a73ff0a2e4d14051e
BLAKE2b-256 8d77787dd6849328313f1d1934ab6abf234343492d06ff00a984da09d6a5aede

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 98f32158423a9b4581cefb4ce856f44cc3881a91644810254a4033a9a43670da
MD5 66f05ff307883b4b2db5d73a62615d48
BLAKE2b-256 f9562064bd7860c05a87634099cb03e457db6d0bf8a084c9c684297274d17502

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe7079320deca2a68157f632fe77c974e2d6f2bd5448cb83b66f0c1b043a0071
MD5 e6a16a4cd179de8667b1085d92adf035
BLAKE2b-256 ce84beb6eaae4b7c3597bd5082819347e9c3a323a5351a24ce0d74dead0bebcf

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 acff5801e4ada84cf228fdafd483528a271d614e99822a7aac0117f7acf486d9
MD5 b9ceb7c6ec25839533a780cda3fe50d0
BLAKE2b-256 64bb454d5574dbb0af4dbab94da5ec1716f97d863bf0654a2e0ccb564c912e08

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 101c8c845b0c66ca19ba730ec72795b48fc2b4456a211b5b438b3f03594d71f4
MD5 1ec6076e8ed59507148cd03e5629a4e6
BLAKE2b-256 fc9b3d2f07c06ef3df7005856a1c949961772e0b51f7733d004c74e391d194b7

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8956eb441c89763ede084fbf8d7300d02c5a4aaf80b57f639d78d0a2c247cb9d
MD5 2f32d46fb2c0ffdebbfc60d911a74e8f
BLAKE2b-256 3cd02e1d0bfdf2f81d62a88721dcd1c603e203cbf45cf37d3c2c152511977c57

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1cec7ecec4de5fb5975a4fde724732b747e51060fa593428177478e2c7f39009
MD5 f7d686096272da084d5b71aa9236afca
BLAKE2b-256 829cc74bd1575d40edf3c778833ddc1b911746032197c7be02287a3e23e51615

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f19c2fd0998264427d672da6e1dc3c93c0947ce3ddbfe43a8ef17f153194dfe
MD5 21d74ace4ed38ae54a17de4b79d16530
BLAKE2b-256 b369491e1eadcb45aec280a02620da7c6dcad9fc6eda1c49395e9b47f9a8a9b2

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 578425bad3e333bd03910604e10727e0ad7bacdd8bbdec06265fed2e3ab157ae
MD5 1ebe32df9c6ba768057126878e9ddb07
BLAKE2b-256 c1cc7de3725421cc4d55d37f95e7d43695cce2a121e9c0da0fb3a495393ec589

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3c22fac0b3af9f39daf7718861493b9c8664c693d00511c5ab99e53d78e2445
MD5 2330da2bc690fd1dacc054b23d382a75
BLAKE2b-256 f616a88f77dfe9d0023f0edd15d94e5d3be9925c623a4a0081a93548453d54fb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c20521b1ff661f3ab10478b5ef93d6408a82baee25136ffd70ccc51d0ffe671d
MD5 b9887ed6a44944d71786135c9fb9c833
BLAKE2b-256 816a4b3db72892e339b26b0b782718e12b0e8db39121f184b7345ff8a078163b

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3f260f167f3a719ddca793a1671718337fc8b22577beca90830ea27fa1dc7a5c
MD5 80f8cce17fc24907bc267c6eb6b60585
BLAKE2b-256 52c6e202bcd490250b9a993402bd049f9f2ac31f5f098af01132a70076a97eb5

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d8ecd10b64917c370d72fd2c458e62cd9562e7042ecafda04f7aa8fc98d83d4e
MD5 bd7cd38c3a0ade13ef26fc0cf8d4bc7a
BLAKE2b-256 22228e716d02adcb1bdce4dee85f697e7cb5547c550d7b9845887af5e21425cf

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e25d51b0f0f314448e062d1200680f11746eb0bbead8adb4b309900cd4a916b3
MD5 d5317d30d8e2372954cb491ecf7fd28b
BLAKE2b-256 3eb2eab5a4a700954b6fdd1bbed25c6c80a3f0dae7a01ed9ad3497a69beda7e7

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca3d7c784b55cdba04d87592c4a0adc46515ec93b9f3e6ac615bc4dc43f1b519
MD5 56cc537b75a817c4efbc90e606194f3f
BLAKE2b-256 1f1fc63e77418b3d2e74c5258c2261796cbc7f8da28fdddd09fff7726b497353

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b18dab12204d4053c5add7e600c70a750e019c6cc6923fca2ac012f3e5c6c9fa
MD5 9261fe40d0871d0452605e54c013cee7
BLAKE2b-256 c9d134c2a0417c226031bdff91751f0b6e169033e6da883800d9bdc5a6baa249

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0541e36090d931e8eac92586c57c621c1ca4f07bfc51c3fe9622fd4663ba016e
MD5 c9a78905b319fae9ef89097456500acc
BLAKE2b-256 d6275625a5a3b6c53beee71d7fec6ef48abfb1b135181a52ce8e8477a093cb75

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4e4d2330b605c086378a1cfed9c618bfec6f26cb7b42d0dd18052332bc9361e
MD5 a4d02dba77101c0be8b3feed39331277
BLAKE2b-256 abb2da8523f3f070788628069bd01e6a0a77bfe237899fe62f956885a3d500c2

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d9a2db88486b1b97e2781eda22e5e4e83745605b738cdf6553c45286213fd15
MD5 0076f75ffe92c76d9b6157b410626077
BLAKE2b-256 e7c6191c507329d510f1e91160cd78331aec8d8d560f213a9b78a818c69cbb20

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f257ceff0ebff2a6b92db5b79f228e40ac9f3f707b551f8bb8ba667a29d929f
MD5 bf9196cae3e50291a705529a0db930f8
BLAKE2b-256 fc2d748125a42cebc27d5f1f433097a78ded4eac687f70a8a2fea28db89155b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page