Skip to main content

A Fast canonical-correlation-based feature selection method

Project description

FastCan is a python implementation of the paper

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation and Uninstallation

Install FastCan:

  • Run pip install fastcan

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.13-cp312-cp312-win_amd64.whl (273.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.13-cp312-cp312-macosx_11_0_arm64.whl (270.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.13-cp312-cp312-macosx_10_13_x86_64.whl (276.5 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

fastcan-0.1.13-cp311-cp311-win_amd64.whl (271.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.13-cp311-cp311-macosx_11_0_arm64.whl (268.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.13-cp311-cp311-macosx_10_9_x86_64.whl (274.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.13-cp310-cp310-win_amd64.whl (271.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.13-cp310-cp310-macosx_11_0_arm64.whl (268.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.13-cp310-cp310-macosx_10_9_x86_64.whl (274.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.13-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.13-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 273.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.13-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7214ece866690045fed44fdb25ed924e1f5ddca7d7623c10fa150890f02608c5
MD5 60fe424d57a8c2411e1d4d191484723e
BLAKE2b-256 f15df71169be91515ae9b7c74a59bd4e44ee19cb8b39be6d1da07d1f0c093f78

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 296d7a8035a76ea98a0a9af857212f562ff039d446379c28ee8233d56e74ba6a
MD5 99c65dd1d966e300dd57e4c83b832271
BLAKE2b-256 5e4d86d96549f290fbb6dbdc9d0ea4a67419b0defc726ea390598ca6601ea7d6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 16bbcdca39ecac6bb769b31a4005698b143461f886622c636bd53d25767084cb
MD5 57bcd41d98558643a6e2940b21488639
BLAKE2b-256 c2a61b31bcd46f03a42d2a1888d1fee92cffd295c49528966bfaae4867cd0755

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.13-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 271.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.13-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e9352585355c8dccd4753c007a63419940d6d6fd98d9a8b64f91e83fdc9e2ee
MD5 898e747709c87ca78afa1255c6d98cb7
BLAKE2b-256 a2a766c605546fdda00d279dfe0e63e396eb845bf51ebc309ce4b60f2d01a5cc

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca2567b9c192b62dded3faebd454c142e21e66c64b0d878fbba60d766f27a9a5
MD5 56405b9b156be757b07e999f146c1f16
BLAKE2b-256 65057e343219e9a8bbe20c9ac22f837f41102502d352e5ff737cbe5f4b0d0cfb

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82663b82f75f949c2abdd8d548048cd0c97c009dc837f6c351842699e14cbf34
MD5 8cf4f0488435df427584f57ce57f8ed2
BLAKE2b-256 382512d12c0cbd264d4e356995fb24b2f05afa3a1965921bfcf7540bb89c0ba2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.13-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 271.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 22c1cb376bec5c421c352060f0bcbef8172799cbdbe44808fc2cf5f268e2271e
MD5 5eb203902422ef183ef7adf4c2aa2d81
BLAKE2b-256 83da77540d330260282fc4a1e591fb6d432c24d934dc06fa9e875627f65ddcb5

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ff477ca0aa7e37239f9ab150b8569b0b82f945b1c0c29c59eeed1d265f30df4
MD5 13976e651b0d704758ae1013f46de82c
BLAKE2b-256 c2cbf1aeaf11ff889c0302b4518751cd5451dffcbff0e6e6ade0a832b616147f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.13-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.13-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 973f0403f2bb7dfb37a253de38d13fdd391a423b2ce8936436cc4322658f77ca
MD5 d4e4152fc0817875635401f8f71e60f4
BLAKE2b-256 95fea5eb2396b134da52cb6df023e3d035f55d371c704824b6f707067ebf1006

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page