Skip to main content

FastCDC (content defined chunking) in pure Python.

Project description

FastCDC

Tests Version Downloads

This package implements the "FastCDC" content defined chunking algorithm in Python with optional cython support. To learn more about content defined chunking and its applications, see the reference material linked below.

Requirements

  • Python Version 3.7 and later. Tested on Linux, Mac and Windows

Installing

$ pip install fastcdc

To enable add additional support for the hash algorithms (xxhash and blake3) use

$ pip install fastcdc[hashes]

Usage

Calculate chunks with default settings:

$ fastcdc tests/SekienAkashita.jpg
hash=103159aa68bb1ea98f64248c647b8fe9a303365d80cb63974a73bba8bc3167d7 offset=0 size=22366
hash=3f2b58dc77982e763e75db76c4205aaab4e18ff8929e298ca5c58500fee5530d offset=22366 size=10491
hash=fcfb2f49ccb2640887a74fad1fb8a32368b5461a9dccc28f29ddb896b489b913 offset=32857 size=14094
hash=bd1198535cdb87c5571378db08b6e886daf810873f5d77000a54795409464138 offset=46951 size=18696
hash=d6347a2e5bf586d42f2d80559d4f4a2bf160dce8f77eede023ad2314856f3086 offset=65647 size=43819

Customize min-size, avg-size, max-size, and hash function

$ fastcdc -mi 16384 -s 32768 -ma 65536 -hf sha256 tests/SekienAkashita.jpg
hash=5a80871bad4588c7278d39707fe68b8b174b1aa54c59169d3c2c72f1e16ef46d offset=0 size=32857
hash=13f6a4c6d42df2b76c138c13e86e1379c203445055c2b5f043a5f6c291fa520d offset=32857 size=16408
hash=0fe7305ba21a5a5ca9f89962c5a6f3e29cd3e2b36f00e565858e0012e5f8df36 offset=49265 size=60201

Scan files in directory and report duplication.

$ fastcdc scan ~/Downloads
[####################################]  100%
Files:          1,332
Chunk Sizes:    min 4096 - avg 16384 - max 131072
Unique Chunks:  506,077
Total Data:     9.3 GB
Dupe Data:      873.8 MB
DeDupe Ratio:   9.36 %
Throughput:     135.2 MB/s

Show help

$ fastcdc
Usage: fastcdc [OPTIONS] COMMAND [ARGS]...

Options:
  --version  Show the version and exit.
  --help     Show this message and exit.

Commands:
  chunkify*  Find variable sized chunks for FILE and compute hashes.
  benchmark  Benchmark chunking performance.
  scan       Scan files in directory and report duplication.

Use from your python code

The tests also have some short examples of using the chunker, of which this code snippet is an example:

from fastcdc import fastcdc

results = list(fastcdc("tests/SekienAkashita.jpg", 16384, 32768, 65536))
assert len(results) == 3
assert results[0].offset == 0
assert results[0].length == 32857
assert results[1].offset == 32857
assert results[1].length == 16408
assert results[2].offset == 49265
assert results[2].length == 60201

Reference Material

The algorithm is as described in "FastCDC: a Fast and Efficient Content-Defined Chunking Approach for Data Deduplication"; see the paper, and presentation for details. There are some minor differences, as described below.

Differences with the FastCDC paper

The explanation below is copied from ronomon/deduplication since this codebase is little more than a translation of that implementation:

The following optimizations and variations on FastCDC are involved in the chunking algorithm:

  • 31 bit integers to avoid 64-bit integers for the sake of the Javascript reference implementation.
  • A right shift instead of a left shift to remove the need for an additional modulus operator, which would otherwise have been necessary to prevent overflow.
  • Masks are no longer zero-padded since a right shift is used instead of a left shift.
  • A more adaptive threshold based on a combination of average and minimum chunk size (rather than just average chunk size) to decide the pivot point at which to switch masks. A larger minimum chunk size now switches from the strict mask to the eager mask earlier.
  • Masks use 1 bit of chunk size normalization instead of 2 bits of chunk size normalization.

The primary objective of this codebase was to have a Python implementation with a permissive license, which could be used for new projects, without concern for data parity with existing implementations.

Prior Art

This package started as Python port of the implementation by Nathan Fiedler (see the nlfiedler link below).

Change Log

[1.7.0] - 2024-06-27

  • Performance improvement @dw
  • Fixed issue with inputs smaller than min_size @grote

[1.6.0] - 2024-05-09

  • added python 3.12 support
  • removed python 3.7 support
  • updated dependencies

[1.5.0] - 2023-03-13

  • added python 3.10/3.11 support
  • removed python 3.6 support
  • update dependencies

[1.4.2] - 2020-11-25

  • add binary releases to PyPI (Xie Yanbo)
  • update dependencies

[1.4.1] - 2020-09-30

  • fix issue with fat option in cython version
  • updated dependencies

[1.4.0] - 2020-08-08

  • add support for multiple path with scan command
  • fix issue with building cython extension
  • fix issue with fat option
  • fix zero-devision error

[1.3.0] - 2020-06-26

  • add new scan command to calculate deduplication ratio for directories

[1.2.0] - 2020-05-23

Added

  • faster optional cython implementation
  • benchmark command

[1.1.0] - 2020-05-09

Added

  • high-level API
  • support for streams
  • support for custom hash functions

[1.0.0] - 2020-05-07

Added

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcdc-1.7.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distributions

fastcdc-1.7.0-cp312-cp312-win_amd64.whl (270.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcdc-1.7.0-cp312-cp312-manylinux_2_31_x86_64.whl (756.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ x86-64

fastcdc-1.7.0-cp312-cp312-macosx_14_0_arm64.whl (368.9 kB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

fastcdc-1.7.0-cp312-cp312-macosx_13_0_x86_64.whl (368.9 kB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

fastcdc-1.7.0-cp312-cp312-macosx_12_0_x86_64.whl (371.4 kB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

fastcdc-1.7.0-cp312-cp312-macosx_11_0_x86_64.whl (371.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

fastcdc-1.7.0-cp311-cp311-win_amd64.whl (270.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcdc-1.7.0-cp311-cp311-manylinux_2_31_x86_64.whl (766.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ x86-64

fastcdc-1.7.0-cp311-cp311-macosx_14_0_arm64.whl (366.5 kB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

fastcdc-1.7.0-cp311-cp311-macosx_13_0_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

fastcdc-1.7.0-cp311-cp311-macosx_12_0_x86_64.whl (368.0 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

fastcdc-1.7.0-cp311-cp311-macosx_11_0_x86_64.whl (367.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

fastcdc-1.7.0-cp310-cp310-win_amd64.whl (270.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcdc-1.7.0-cp310-cp310-manylinux_2_31_x86_64.whl (721.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ x86-64

fastcdc-1.7.0-cp310-cp310-macosx_14_0_arm64.whl (366.5 kB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

fastcdc-1.7.0-cp310-cp310-macosx_13_0_x86_64.whl (280.0 kB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

fastcdc-1.7.0-cp310-cp310-macosx_12_0_x86_64.whl (280.8 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

fastcdc-1.7.0-cp310-cp310-macosx_11_0_x86_64.whl (281.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

fastcdc-1.7.0-cp39-cp39-win_amd64.whl (270.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcdc-1.7.0-cp39-cp39-manylinux_2_31_x86_64.whl (723.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ x86-64

fastcdc-1.7.0-cp39-cp39-macosx_14_0_arm64.whl (367.0 kB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

fastcdc-1.7.0-cp39-cp39-macosx_13_0_x86_64.whl (280.2 kB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

fastcdc-1.7.0-cp39-cp39-macosx_12_0_x86_64.whl (281.0 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

fastcdc-1.7.0-cp39-cp39-macosx_11_0_x86_64.whl (281.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

fastcdc-1.7.0-cp38-cp38-win_amd64.whl (270.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastcdc-1.7.0-cp38-cp38-manylinux_2_31_x86_64.whl (742.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ x86-64

fastcdc-1.7.0-cp38-cp38-macosx_14_0_arm64.whl (367.3 kB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

fastcdc-1.7.0-cp38-cp38-macosx_13_0_x86_64.whl (280.3 kB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

fastcdc-1.7.0-cp38-cp38-macosx_12_0_x86_64.whl (280.9 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

fastcdc-1.7.0-cp38-cp38-macosx_11_0_x86_64.whl (280.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file fastcdc-1.7.0.tar.gz.

File metadata

  • Download URL: fastcdc-1.7.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0.tar.gz
Algorithm Hash digest
SHA256 634b4fbea85296484e896b6ff70e43bcd94724989530c8639a6e5b253105eed2
MD5 aa8a08fb127daef7b216ac324c0e3414
BLAKE2b-256 f6b8b4c03fea1cc6e5573e571304e248571669a5fe76b2c234cbe02dd00b2163

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcdc-1.7.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 270.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 38bbbc21c28c12b618f465c128bd82164d4c620888ce8d39934ca33082d203c4
MD5 f0e1fe02c49dc47529f97fc7c2a8eda6
BLAKE2b-256 31ae1995e5afc830e747fd33f5598f8d4dc8fa716e16235d4f9e2486a4eb2d51

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 2826371f08fb5b970723b9cec299cf003c6f1a86b1112d883473f433e9db2b10
MD5 65313578a80222d8828e909a06a5b6d6
BLAKE2b-256 5111f4e758b1d75bbf35fd31108c180280ded5bb3466980a844832bef49db6a5

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b17830785a7b9e6507fc2d5b40c920aa16de3609f60797bc00c07061ac7ae72d
MD5 4a9bf57c9bfeab72f0e3907f7abea8f7
BLAKE2b-256 d1fbf9d2fbc4a6bc1ade4250d7ba6f331f7f1c282b72db4666c4b3441a020346

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 06628cdd1f58f216ed631b8cdf9d5b069210aaa8cc65e0e4ea255ca71eb84bc8
MD5 e9e754b9586d2242039d92498ee369ba
BLAKE2b-256 e777b7033bb25541f4141a0993b314eb1a2c58a20e44e143e3bae253f1680e00

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f797f02dad05ab3006f28e2fd7aa4c2f9be696341f40ee760730102de227bc0c
MD5 f7006f3ee8d8b32dc84dc60ea33491d2
BLAKE2b-256 d42ebe04e02d151b95840169575d81d7a1ed1e1be1ba94ed3aacef28f568a4ed

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 6cf75d6ebc38c9744e3e8e11486bd91b3301c453c258337ab34fc3806a0b47f3
MD5 81f8a8790b6374138bcda6179c7932bd
BLAKE2b-256 4dd2de4fdb44aa33301db953abf36e5a178ce391657335c54182dc2281360d61

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcdc-1.7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 270.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 62161731452f3938eac0b32596240230a5322e0cd55f5e248ed61ab294e29804
MD5 f46eceda3157747055d5f7f9a18eca1b
BLAKE2b-256 8d822d1598307cde7f7e34ae756ff359d4065413fdccf16989cc674050955be0

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 6faa04585913712cf9c8145907607262b199d7efc09f63e6d9bde4d6c387c03f
MD5 c9c848e443872f9a3057794366bdb34f
BLAKE2b-256 6e0ed7188adf9ff0db17fc449723eb940698b2e57f7ee117a68d3dffa1d796e6

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7a296db028111d91cdbbdf96e533e1eeef3b485b8afb00cdb28f21fde5d0f1df
MD5 b025f9c01c43107cca76eb1c2fc8ea73
BLAKE2b-256 58e2577f6cb3bd05efd583c9ea4400591a1119b59c5e78890c1f4a3aa3760736

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 9fd1f1b0ec31e76bb8332634c7968a8c2dbbea523da08a8e992a0407872a703b
MD5 ed3271e4f59184b3ea826155871b4de1
BLAKE2b-256 5ddaad93e7eff62efe8ab5190bdc6a25e52dde2e24931cd1b601b0bee3b6ee98

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 758b239ad384e30bd11d1c633b2b302d42bf90d2041dd81bb330174f21ead88d
MD5 49c8d4e87ac5af5a62cb98dca279d7e6
BLAKE2b-256 5da799fb058cfdfcbca6c6cc892cfe33b4fea7ea6008f8407da361dd544d5592

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 acd71ad4fa64352c4ad96f0ef6af4d70d84b95e168e89685ad844ba1847949d7
MD5 9f50d96d68a5f0c8ade149c5fdd1ef8b
BLAKE2b-256 3b58d35d53fd1c548b7158637071513195366c9ab2074dfbaa293ecd25348fce

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcdc-1.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 270.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 738615171cddc4b428a63f69d02cf79bb665bebd4bb56bbb8b495b502bd52743
MD5 9a874b25827f475212633458a16fa007
BLAKE2b-256 34d8d5d3c5822a803bd4f203b94d81d1e7483e50ea4af6966f2f5c5aa17f211a

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 52f525f610f202e83c7e6816d3027ad0b1c48d1391d864f72c423d13b14a896f
MD5 ac7974082dba2c0e6ed8b902c5bb8390
BLAKE2b-256 ba2efcfdd711d57a5f3e5c399a7ab8835428df084b09eae603ae0d2e89f1b7c7

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7cb1de30684990fedc6615d18f42096ff00731163ea5d43b024d30fd50a634d1
MD5 f7c37f186c5f7169b5c788158d5fa556
BLAKE2b-256 70fbc5b0c8a134670a213656653d386e46c0660af408b14307b2ce3da3d5361a

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2244c0baa50b242e78b3ef0ead3fdff52d77a65e61315ff2c5b6412bfebb39e3
MD5 73d8932b0a4ac3e797cd18027d45fd48
BLAKE2b-256 4bc7f35997deb842c1591610618c2a77f572a91099453d75eb2598211dc0d13d

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 a20eb410c13805931bf16f2c16994fead4d67b8129c8cf84c7a3dbd35b58d863
MD5 9009e1697897f257ead8b51865fd5889
BLAKE2b-256 4c7c71332c1cd20b1a58a0107be1ad66cffa4d0d49f6f498841d0625d3d84b1c

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 d8a42fae96173c3f1c6215288b1b7d82ae36e0f12bd137c2cdbe5f5a866c96cf
MD5 fe92636c474debffe6b98611c00ca6a3
BLAKE2b-256 d437ab0e02775b19bcdaa772230999aa4352205f665dc8fa0abae07ce5692bb8

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcdc-1.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 270.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8740e3b50a7d64fe3de0d21ec6802dce4ca0ae342d7b44ffe1cca9aa3667a408
MD5 71ca84cefe222425942b2ff8f54e5448
BLAKE2b-256 3572442dc121ee8d99d75a2d60f5492925b7576f6f756fc6308d9a9912f1ce97

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 c68f3762242d2091f32eeb8c7ebb685e302482c07e80be206faada360bf5227b
MD5 d47462d518fee32ec5d810a4e8e3389d
BLAKE2b-256 ed1881385d6d91dce50239d90bd7a54c63fe60c176771926427aeeb497c512a7

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0177f314e1646d42782c43c0e6969868c9cb719b012c1d69e9f6548d5cee0a15
MD5 3b34a3c1fca6248b89ef11d2cca1b90d
BLAKE2b-256 870612775454b0b0778ac9c6728885fbe39dde5443d025f8e48251f19572b38b

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7c04a702bd9a26fbbf74073f24af7b13f5d6c726a70f98a7b8e6ff6cfc58d621
MD5 b23f5359e0a06ea2af77fba0eb06f049
BLAKE2b-256 804934736c690d509347e3b1d8ca64614a50268cc58b2f4364ca516c4ad3b989

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 315631e8c3f31a03f9246cb20f0694b9876a5126d627e644962b796dc4bf25d6
MD5 05bde74a03f14e21ed8d34b022780df3
BLAKE2b-256 6b39baeb678ab1e4782cd2e4a11fe2a75a737e1d203bbe61cf9ac38886b78e8a

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f3fa63ccdd549a13d67fd19f2e4a3b6b6ef8e49edeb90604c393e25b67c14699
MD5 6a079a5107aaaa522ef3ba4f8070f5be
BLAKE2b-256 89464aabc4f1b9873c254024843d331c9537d9b16e862999e79249add1193c08

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastcdc-1.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 270.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.1 Windows/10

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93cbd0425ef2390d8f840b726c5b25d2585a0dfd1f19bd07eec010ebc8bdeba6
MD5 c534fd3ec84d86a34b587ae46f015f29
BLAKE2b-256 93d8b84bdb4c7891ada28d3b0854be5c572b158002dc4ef5a29771149cbe4f11

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 f2b674e7f16e87cc10829dcf794470e6b1582d0c3ea9d3f911763949bfd360ed
MD5 a7e43a81867c68d0ca5528a1ca0c3566
BLAKE2b-256 83cc98610c3b3e05b2945154d551298d562c4ff343c6bf0d30e2891ff6abc715

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 58d11966959c0b1d04f1e343a4fd2a1a08d96fbe1b936b75f408f19e7eaf07d7
MD5 021d714a781d76e97007549f6e42b010
BLAKE2b-256 8b79a360b719955cf59871a6b3dcb929e4d3df38df45e563082180e5493b0551

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1ef25f311322dcdf9d5b850ef2b41862895c079d812e74cf3274a6ec50868eb8
MD5 feb24c7cc6aa772e146ece7aceb03854
BLAKE2b-256 1d5aca579b94fd2ffc24c78e5aa3ab6a762ac754bac5e377e3d19ae679b7205b

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c4c0195d2a9878f89ade6893feb13abf0772b26cf2cf55ade91edd3136aacf64
MD5 9ab1d4532d8c312936dfcbec11781d36
BLAKE2b-256 0a292bee6feff369e589aef33facc0b8282f7cb746c1e161d7d0db723248af8a

See more details on using hashes here.

File details

Details for the file fastcdc-1.7.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for fastcdc-1.7.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8a3873fdb05d5ce3e1b3b6219bf1d6be5eee4e6c8d1a9e219162bac972b3e5c1
MD5 f453738bb540d8b69b8f6435175e2850
BLAKE2b-256 b550c2498673a1c3774419302d98af38fd666ac28c3d5d394da9469217e43502

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page