Skip to main content

Fast tool for gaining insights from large image repositories.

Project description

Fastdup Tool

Copyright (C) 2022 by Dr. Amir Alush and Dr. Danny Bickson.

fastdup is a tool for gaining insights from a large image/video collection. It can find anomalies, duplicate and near duplicate images/videos, clusters of similarity, learn the normal behavior and temporal interactions between images/videos. It can be used for smart subsampling of a higher quality dataset, outlier removal, novelty detection of new information to be sent for tagging.

fastdup is:

  • Unsupervised: fits any dataset
  • Scalable : handles 400M images on a single machine
  • Efficient: works on CPU only
  • Low Cost: can process 12M images on a $1 cloud machine budget

Non Commercial License

Github Project Page

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastdup-1.132-cp311-cp311-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastdup-1.132-cp310-cp310-manylinux_2_31_x86_64.whl (75.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ x86-64

fastdup-1.132-cp310-cp310-manylinux_2_31_aarch64.whl (49.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

fastdup-1.132-cp310-cp310-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastdup-1.132-cp39-cp39-manylinux_2_31_x86_64.whl (75.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ x86-64

fastdup-1.132-cp39-cp39-manylinux_2_31_aarch64.whl (49.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

fastdup-1.132-cp39-cp39-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastdup-1.132-cp38-cp38-manylinux_2_31_x86_64.whl (75.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ x86-64

fastdup-1.132-cp38-cp38-manylinux_2_31_aarch64.whl (49.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ ARM64

fastdup-1.132-cp38-cp38-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastdup-1.132-cp37-cp37m-manylinux_2_31_x86_64.whl (75.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.31+ x86-64

fastdup-1.132-cp37-cp37m-manylinux_2_31_aarch64.whl (49.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.31+ ARM64

File details

Details for the file fastdup-1.132-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56e451c1578df9b0607a4663d7bd314fe63f71d1d9458141d203b48eeec9514c
MD5 fc2a9a38ff509ced1879fca5f2097ca0
BLAKE2b-256 241d26442161182d629f57849acc13d8af3d5024855b1e4e9e9732060d94ba63

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp310-cp310-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp310-cp310-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 14dbff086b7c29a5d1602866a3bfc3a95cb58a680537fd5cf8d4d471f57c58f1
MD5 54a07d84bb99f79896976ebb383006ea
BLAKE2b-256 3d533e1235f8b0099a992fe4af8309a21f31ec7856868d445d2fffe85b12bfef

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 d25cdc57e273b33286a0182ce76d850140752339dc386756a58c2ce19dba579d
MD5 1753562cdfffb0cc69ba0f880baf2d55
BLAKE2b-256 67e0d9783b2483039b9f0cbb456b9a8de929d95bfb495dcd0b1d544248540ca0

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2913f61302f4897a93b61350571fafed1e46f72df57f9426cc78d34797a45636
MD5 6b79e431ae0124262bc96f2324e49bd0
BLAKE2b-256 f201b2a2c6c0afbc3c88460b02776c49cbf2cb2b74a3700feb5d6f2f7bc5167e

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp39-cp39-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp39-cp39-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 7c919f5da331045fc0e6fe0a4b4a120c8519c56dbe6260b1cabbd74df5bb4006
MD5 3dc1a233a26726a5d80b32213c5d7472
BLAKE2b-256 14e424776e3ec54a35ca39d652ed376fc1467d2d255b49136e1a48fb445e3eab

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 2acf875d04dc3eb861b2c87b541a692d61beddfb46d366f7f2700fdf6dccf8ba
MD5 0e21628c7910ba01e947373c2d5f1d4a
BLAKE2b-256 5cf05e4985ad5c81c4b42be7f10c1b5e296bf28b77f091355cd72b012a161d92

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 866864a6cc1ebcdaa992cedbc1d49a4d356b95889e7a6c33c70c59df4938623d
MD5 60cdbd24adcf8534ca365516c062058b
BLAKE2b-256 4c16049657c0383c465acf8b5b8573813e750354c0fefb321b1ab0cb0ac92a2e

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp38-cp38-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp38-cp38-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 8276be09a19f8bee6c0deeba45a9bf9ff92022fac1b6b8fbd9bd94c50a2b5e55
MD5 57f4333811766a783f23083e62b03f06
BLAKE2b-256 585c001ecd42edff0eed2c835fd6764e730068f3cf9a419f7cac3605d2d2cdf4

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp38-cp38-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp38-cp38-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 5767bc1a9d1441afbda3e28291dd3f13cdbc9da4e06a28b441a543f01b988da6
MD5 4037602b8e78261850dc02dca3e56907
BLAKE2b-256 ec0da755a7bd8fabee5fe86fa363e184f47a913408e8b1bdd7a1750f8ebb27a8

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba9d0f78236dbfb1514e10a52731ff16d7c7cb8a5339cc3db43a76f67e514a3a
MD5 b83dcbcd3e812108241c2bb1492716ba
BLAKE2b-256 86e302752c593641353a7fe2162dad148beaaa8d89104b441baf52ceb5332195

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp37-cp37m-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp37-cp37m-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 f5e7139ad6586460bab66d300d364e8b9b0539e603b375b612e008f2b42b82ed
MD5 c753e3ffa6f3a03445bdefac0acf7ea5
BLAKE2b-256 0866b4999d29ba97c4ad5ecdbb547978b9cb9944229bb4817f17413b49e66bac

See more details on using hashes here.

File details

Details for the file fastdup-1.132-cp37-cp37m-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for fastdup-1.132-cp37-cp37m-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 a0e381711bb0392776c900b2519856f5284d8815b83e017b446232ec6901907f
MD5 5b4422536da296d26602caceff8c9ed7
BLAKE2b-256 0af26c64afef3019e29495e94654c6fb7361618094f04d24a653e98c37a32e57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page