FastTENET
Project description
Indroduction
- FastTENET is an accelerated TENET algorithm based on manycore computing.
Installation
- :snake: Anaconda is recommended to use and develop FastTENET.
- :penguin: Linux distros are tested and recommended to use and develop FastTENET.
Anaconda virtual environment
After installing anaconda, create a conda virtual environment for FastTENET.
In the following command, you can change the Python version
(e.g.,python=3.7
or python=3.9
).
conda create -n fasttenet python=3.9
Now, we can activate our virtual environment for FastTENET as follows.
conda activate fasttenet
Install from PyPi
pip install fasttenet
- Default backend framework of the FastTENET is PyTorch Lightning.
- You need to install other backend frameworks such as CuPy, Jax, and TensorFlow
Install from GitHub repository
First, clone the recent version of this repository.
git clone https://github.com/cxinsys/fasttenet.git
Now, we need to install FastTENET as a module.
cd fasttenet
pip install -e .
- Default backend framework of the FastTENET is PyTorch Lightning.
Install backend frameworks
FastTENET supports several backend frameworks including CuPy, JAX, TensorFlow, PyTorch and PyTorch-Lightning.
To use frameworks, you need to install the framework manually
- PyTorch Lightning
PyTorch Lightning is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually via pip.
python -m pip install lightning
- PyTorch: Installing custom PyTorch version
PyTorch is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually.
conda install pytorch torchvision torchaudio pytorch-cuda=xx.x -c pytorch -c nvidia (check your CUDA version)
Install Cupy from Conda-Forge with cudatoolkit supported by your driver
conda install -c conda-forge cupy cuda-version=xx.x (check your CUDA version)
Install JAX with CUDA > 12.x
pip install -U "jax[cuda12]"
Use 'XLA_PYTHON_CLIENT_PREALLOCATE=false' to disables the preallocation behavior
(https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html)
Install TensorFlow-GPU with CUDA
python3 -m pip install tensorflow[and-cuda]
Tutorial
FastTENET class
Create FastTENET instance
FastTENET class requires data path as parameter
parameters
- dpath_exp_data: expression data path, required
- dpath_trj_data: trajectory data path, required
- dpath_branch_data: branch(cell select) data path, required
- dpath_tf_data: tf data path, required
- spath_result_matrix: result matrix data path, optional, default: None
- make_binary: if True, make binary expression and node name file, optional, default: False
import fasttenet as fte
worker = fte.FastTENET(dpath_exp_data=dpath_exp_data,
dpath_trj_data=dpath_trj_data,
dpath_branch_data=dpath_branch_data,
dpath_tf_data=dpath_tf_data,
spath_result_matrix=spath_result_matrix,
make_binary=True)
Run FastTENET
parameters
- backend: optional, default: 'cpu'
- device_ids: list or number of devcies to use, optional, default: [0] (cpu), [list of whole gpu devices] (gpu)
- procs_per_device: The number of processes to create per device when using non 'cpu' devices, optional, default: 1
- batch_size: Required
- kp: kernel percentile, optional, default: 0.5
- binning_method: discretization method for expression values, optional, 'FSBW-L' is recommended to achieve results similar to TENET.
result_matrix = worker.run(backend='gpu',
device_ids=8,
procs_per_device=4,
batch_size=2 ** 16,
kp=0.5,
binning_method='FSBW-L',
)
Run FastTENET with YAML config file
- Before run tutorial_config.py, batch_size parameter must be modified to fit your gpu memory size
- You can set parameters and run FastTENET via a YAML file
- The config file must have values set for all required parameters
Usage
python tutorial_config.py --config [config file path]
Example
python tutorial_config.py --config ../configs/config_tuck_sub.yml
Output
TE_result_matrix.txt
Run FastTENET with tutorial_notf.py
- Before run tutorial_notf.py, batch_size parameter must be modified to fit your gpu memory size
Usage
python tutorial_notf.py --fp_exp [expression file path]
--fp_trj [trajectory file path]
--fp_br [cell select file path]
--backend [name of backend framework]
--num_devices [number of devices]
--batch_size [batch size]
--sp_rm [save file path]
Example
python tutorial_notf.py --fp_exp expression_dataTuck.csv
--fp_trj pseudotimeTuck.txt
--fp_br cell_selectTuck.txt
--backend lightning
--num_devices 8
--batch_size 32768
--sp_rm TE_result_matrix.txt
Output
TE_result_matrix.txt
Run FastTENET with tutorial_tf.py
- Before run tutorial_tf.py, batch_size parameter must be modified to fit your gpu memory size
Usage
python tutorial_tf.py --fp_exp [expression file path]
--fp_trj [trajectory file path]
--fp_br [cell select file path]
--fp_tf [tf file path]
--backend [name of backend framework]
--num_devices [number of devices]
--batch_size [batch size]
--sp_rm [save file path]
Example
python tutorial_tf.py --fp_exp expression_dataTuck.csv
--fp_trj pseudotimeTuck.txt
--fp_br cell_selectTuck.txt
--fp_tf mouse_tfs.txt
--backend lightning
--num_devices 8
--batch_size 32768
--sp_rm TE_result_matrix.txt
Output
TE_result_matrix.txt
Run make_grn.py
parameters
- fp_rm: result matrix, required
- fp_tf: tf list file, optional
- fdr: specifying fdr, optional, default: 0.01
- t_degrees: specifying number of outdegrees, optional, generate final GRNs by incrementally increasing the fdr
value until the total number of outdegrees is greater than the parameter value. - trim_threshold: trimming threshold, optional, default: 0
Usage
When specifying an fdr
python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --fdr [fdr]
Example
python make_grn.py --fp_rm TE_result_matrix.txt --fp_tf mouse_tf.txt --fdr 0.01
Output
TE_result_matrix.byGRN.fdr0.01.sif, TE_result_matrix.byGRN.fdr0.01.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif.outdegrees.txt
Usage
When specifying the t_degrees
python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --t_degrees [number of outdegrees]
Example
python make_grn.py --fp_rm TE_result_matrix.txt--fp_tf mouse_tf.txt --t_degrees 1000
Output
TE_result_matrix.byGRN.fdr0.06.sif, TE_result_matrix.byGRN.fdr0.06.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif.outdegrees.txt
TODO
- add 'JAX' backend module
- add 'PyTorch Lightning' backend module
- add 'TensorFlow' backend module
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fasttenet-0.1.11.tar.gz
.
File metadata
- Download URL: fasttenet-0.1.11.tar.gz
- Upload date:
- Size: 10.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f32f856951a58f1ade73825c5c8c48e6f44b026aef00490722a2f5ad0154a59 |
|
MD5 | 546fe1757639a06c54be31a3c2e13456 |
|
BLAKE2b-256 | 7c20f91f953676d62d55685b918561d565a841ecd67cb5a1f266341f64f30247 |
Provenance
The following attestation bundles were made for fasttenet-0.1.11.tar.gz
:
Publisher:
publish.yml
on cxinsys/fasttenet
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
fasttenet-0.1.11.tar.gz
- Subject digest:
5f32f856951a58f1ade73825c5c8c48e6f44b026aef00490722a2f5ad0154a59
- Sigstore transparency entry: 151143848
- Sigstore integration time:
- Predicate type:
File details
Details for the file fasttenet-0.1.11-py3-none-any.whl
.
File metadata
- Download URL: fasttenet-0.1.11-py3-none-any.whl
- Upload date:
- Size: 8.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | adf2b1efe8797848c543e544340558cd25372151cfd17daed6b201999dac45c9 |
|
MD5 | 901512270a1bafbfaf27c7f3533f4b92 |
|
BLAKE2b-256 | a99652e3bb3286c9827ce17d28c5237e7c96754a0045412f67fb87285e62d687 |
Provenance
The following attestation bundles were made for fasttenet-0.1.11-py3-none-any.whl
:
Publisher:
publish.yml
on cxinsys/fasttenet
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
fasttenet-0.1.11-py3-none-any.whl
- Subject digest:
adf2b1efe8797848c543e544340558cd25372151cfd17daed6b201999dac45c9
- Sigstore transparency entry: 151143849
- Sigstore integration time:
- Predicate type: