Skip to main content

FastTENET

Project description

Drawing

Indroduction

  • FastTENET is an accelerated TENET algorithm based on manycore computing.

Installation

  • :snake: Anaconda is recommended to use and develop FastTENET.
  • :penguin: Linux distros are tested and recommended to use and develop FastTENET.

Anaconda virtual environment

After installing anaconda, create a conda virtual environment for FastTENET. In the following command, you can change the Python version (e.g.,python=3.7 or python=3.9).

conda create -n fasttenet python=3.9

Now, we can activate our virtual environment for FastTENET as follows.

conda activate fasttenet

Install from PyPi

pip install fasttenet
  • Default backend framework of the FastTENET is PyTorch Lightning.
  • You need to install other backend frameworks such as CuPy, Jax, and TensorFlow

Install from GitHub repository

First, clone the recent version of this repository.

git clone https://github.com/cxinsys/fasttenet.git

Now, we need to install FastTENET as a module.

cd fasttenet
pip install -e .
  • Default backend framework of the FastTENET is PyTorch Lightning.

Install backend frameworks

FastTENET supports several backend frameworks including CuPy, JAX, TensorFlow, PyTorch and PyTorch-Lightning.
To use frameworks, you need to install the framework manually


  • PyTorch Lightning

PyTorch Lightning is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually via pip.

python -m pip install lightning

PyTorch is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually.

conda install pytorch torchvision torchaudio pytorch-cuda=xx.x -c pytorch -c nvidia (check your CUDA version)

Install Cupy from Conda-Forge with cudatoolkit supported by your driver

conda install -c conda-forge cupy cuda-version=xx.x (check your CUDA version)

Install JAX with CUDA > 12.x

pip install -U "jax[cuda12]"

Use 'XLA_PYTHON_CLIENT_PREALLOCATE=false' to disables the preallocation behavior
(https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html)


Install TensorFlow-GPU with CUDA

python3 -m pip install tensorflow[and-cuda]

Tutorial

FastTENET class

Create FastTENET instance

FastTENET class requires data path as parameter

parameters

  • dpath_exp_data: expression data path, required
  • dpath_trj_data: trajectory data path, required
  • dpath_branch_data: branch(cell select) data path, required
  • dpath_tf_data: tf data path, required
  • spath_result_matrix: result matrix data path, optional, default: None
  • make_binary: if True, make binary expression and node name file, optional, default: False
import fasttenet as fte

worker = fte.FastTENET(dpath_exp_data=dpath_exp_data,
                           dpath_trj_data=dpath_trj_data,
                           dpath_branch_data=dpath_branch_data,
                           dpath_tf_data=dpath_tf_data,
                           spath_result_matrix=spath_result_matrix,
                           make_binary=True)

Run FastTENET

parameters

  • backend: optional, default: 'cpu'
  • device_ids: list or number of devcies to use, optional, default: [0] (cpu), [list of whole gpu devices] (gpu)
  • procs_per_device: The number of processes to create per device when using non 'cpu' devices, optional, default: 1
  • batch_size: Required
  • kp: kernel percentile, optional, default: 0.5
  • binning_method: discretization method for expression values, optional, 'FSBW-L' is recommended to achieve results similar to TENET.
result_matrix = worker.run(backend='gpu',
                                device_ids=8,
                                procs_per_device=4,
                                batch_size=2 ** 16,
                                kp=0.5,
                                binning_method='FSBW-L',
                                )

Run FastTENET with YAML config file

  • Before run tutorial_config.py, batch_size parameter must be modified to fit your gpu memory size
  • You can set parameters and run FastTENET via a YAML file
  • The config file must have values set for all required parameters

Usage

python tutorial_config.py --config [config file path]

Example

python tutorial_config.py --config ../configs/config_tuck_sub.yml

Output

TE_result_matrix.txt

Run FastTENET with tutorial_notf.py

  • Before run tutorial_notf.py, batch_size parameter must be modified to fit your gpu memory size

Usage

python tutorial_notf.py --fp_exp [expression file path] 
                        --fp_trj [trajectory file path] 
                        --fp_br [cell select file path] 
                        --backend [name of backend framework]
                        --num_devices [number of devices]
                        --batch_size [batch size]
                        --sp_rm [save file path]

Example

python tutorial_notf.py --fp_exp expression_dataTuck.csv 
                        --fp_trj pseudotimeTuck.txt 
                        --fp_br cell_selectTuck.txt 
                        --backend lightning
                        --num_devices 8
                        --batch_size 32768
                        --sp_rm TE_result_matrix.txt

Output

TE_result_matrix.txt

Run FastTENET with tutorial_tf.py

  • Before run tutorial_tf.py, batch_size parameter must be modified to fit your gpu memory size

Usage

python tutorial_tf.py --fp_exp [expression file path] 
                      --fp_trj [trajectory file path] 
                      --fp_br [cell select file path] 
                      --fp_tf [tf file path] 
                      --backend [name of backend framework]
                      --num_devices [number of devices]
                      --batch_size [batch size]
                      --sp_rm [save file path]

Example

python tutorial_tf.py --fp_exp expression_dataTuck.csv 
                      --fp_trj pseudotimeTuck.txt 
                      --fp_br cell_selectTuck.txt 
                      --fp_tf mouse_tfs.txt 
                      --backend lightning
                      --num_devices 8
                      --batch_size 32768
                      --sp_rm TE_result_matrix.txt

Output

TE_result_matrix.txt

Run make_grn.py

parameters

  • fp_rm: result matrix, required
  • fp_tf: tf list file, optional
  • fdr: specifying fdr, optional, default: 0.01
  • t_degrees: specifying number of outdegrees, optional, generate final GRNs by incrementally increasing the fdr
    value until the total number of outdegrees is greater than the parameter value.
  • trim_threshold: trimming threshold, optional, default: 0

Usage

When specifying an fdr

python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --fdr [fdr]

Example

python make_grn.py --fp_rm TE_result_matrix.txt --fp_tf mouse_tf.txt --fdr 0.01

Output

TE_result_matrix.byGRN.fdr0.01.sif, TE_result_matrix.byGRN.fdr0.01.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif.outdegrees.txt

Usage

When specifying the t_degrees

python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --t_degrees [number of outdegrees]

Example

python make_grn.py --fp_rm TE_result_matrix.txt--fp_tf mouse_tf.txt --t_degrees 1000

Output

TE_result_matrix.byGRN.fdr0.06.sif, TE_result_matrix.byGRN.fdr0.06.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif.outdegrees.txt

TODO

  • add 'JAX' backend module
  • add 'PyTorch Lightning' backend module
  • add 'TensorFlow' backend module

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fasttenet-0.1.8.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

fasttenet-0.1.8-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file fasttenet-0.1.8.tar.gz.

File metadata

  • Download URL: fasttenet-0.1.8.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fasttenet-0.1.8.tar.gz
Algorithm Hash digest
SHA256 0ed5cc2ee68f2eb8cf3da2593adc3af25d6b646f7808b8c4eb13516d2f323e69
MD5 fc8a559a564284d5f3434698a4bc9506
BLAKE2b-256 3dadc59be573678b94c335d64988a37f782c2c6ab6311484279e49fccd7d178f

See more details on using hashes here.

Provenance

The following attestation bundles were made for fasttenet-0.1.8.tar.gz:

Publisher: publish.yml on cxinsys/fasttenet

Attestations:

File details

Details for the file fasttenet-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: fasttenet-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fasttenet-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1f19a05077e8e5ac6d4ece4c5e1cdb8d713a2f4e00c08436ed1f1c677f58b080
MD5 00b865e06c5edc72d7d4723b55141350
BLAKE2b-256 a74c29d806a93fe699d42c799576cb835cc539c10a7fa7e61398e91aedb80f69

See more details on using hashes here.

Provenance

The following attestation bundles were made for fasttenet-0.1.8-py3-none-any.whl:

Publisher: publish.yml on cxinsys/fasttenet

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page