Skip to main content

No project description provided

Project description

FastVS

fastvs PyPI version License: MIT

FastVS (Fast Vector Search) is a Python library designed for exact vector search in dataframes or tables. It provides functionality to work with both PyArrow Tables and Pandas DataFrames, allowing users to perform nearest neighbor searches using various distance metrics. It is most optimized for PyArrow Tables, as it uses the Rust Arrow library under the hood for zero-copy and vectorized computation.

Installation

FastVS can be installed using pip:

pip install fastvs

Functions

FastVS offers the following main functions:

search_arrow

Searches a PyArrow Table for the k nearest neighbors of a query point.

Parameters

  • table (pyarrow.Table): The table to search.
  • column_name (str): This column should be a list or np array type column, where each element is a vector of floats.
  • query_point (list or np array): The query point.
  • k (int): The number of nearest neighbors to return.
  • metric (str): The metric to use for the search (e.g., "euclidean", "manhattan", "cosine_similarity", "inner_product").

Returns

  • Tuple[List[int], List[float]]: The indices and distances of the k nearest neighbors.

Usage

import pyarrow as pa
from fastvs import search_arrow

indices, distances = search_arrow(your_pyarrow_table, "your_column", [1.0, 2.0], 5, "cosine_similarity")

search_pandas

Searches a Pandas DataFrame for the k nearest neighbors of a query point. This function uses search_table under the hood. Note that this function is slower than search_arrow due to the copying of data from the DataFrame to the Arrow table format.

Parameters

  • df (pandas.DataFrame): The DataFrame to search.
  • column_name (str): The column name to search. This column should be a list or np array type column, where each element is a vector of floats.
  • query_point (list or np array): The query point.
  • k (int): The number of nearest neighbors to return.
  • metric (str): The metric to use for the search.

Returns

  • Tuple[List[int], List[float]]: The indices and distances of the k nearest neighbors.

Usage

import pandas as pd
from fastvs import search_pandas

df = pd.read_csv("your_dataset.csv")
indices, distances = search_pandas(df, "your_column", [1.0, 2.0], 5, "cosine_similarity")

apply_distance_arrow

Applies a distance function to a PyArrow table and returns an array of distances.

Parameters

  • table (pyarrow.Table): The table to search.
  • column_name (str): The column name to search. This column should be a list or np array type column, where each element is a vector of floats.
  • query_point (list or np array): The query point.
  • metric (str): The metric to use for the search.

Returns

  • pyarrow.Array: The distances in the order of the table.

Usage

import pyarrow as pa
from fastvs import apply_distance_arrow

table = pa.Table.from_pandas(your_dataframe)
distances = apply_distance_arrow(table, "your_column", [1.0, 2.0], "euclidean")

apply_distance_pandas

Applies a distance function to a Pandas DataFrame and returns a Series of distances. Uses apply_distance_arrow under the hood.

Parameters

  • df (pandas.DataFrame): The DataFrame to search.
  • column_name (str): The column name to search. This column should be a list or np array type column, where each element is a vector of floats.
  • query_point (list or np array): The query point.
  • metric (str): The metric to use for the search.

Returns

  • pandas.Series: The distances as a pandas Series.

Usage

import pandas as pd
from fastvs import apply_distance_pandas

df = pd.read_csv("your_dataset.csv")
distances = apply_distance_pandas(df, "your_column", [1.0, 2.0], "euclidean")

Supported Metrics

FastVS supports various distance metrics, including:

  • Euclidean ("euclidean")
  • Manhattan ("manhattan")
  • Inner Product ("inner_product")
  • Cosine Similarity ("cosine_similarity")

Euclidean Distance

The Euclidean distance between two points $P$ and $Q$ in $N$-dimensional space, with $P = (p_1, p_2, ..., p_N)$ and $Q = (q_1, q_2, ..., q_N)$, is defined as:

 d(P, Q) = \sqrt{\sum_{i=1}^{N} (p_i - q_i)^2}

Manhattan Distance

The Manhattan distance (also known as L1 norm) between two points $P$ and $Q$ in $N$-dimensional space is the sum of the absolute differences of their Cartesian coordinates:

 d(P, Q) = \sum_{i=1}^{N} |p_i - q_i|

Cosine Similarity

Cosine similarity measures the cosine of the angle between two vectors$P$and$Q$in an$N$-dimensional space. It is defined as:

 \text{Cosine Similarity}(P, Q) = \frac{P \cdot Q}{\|P\| \|Q\|}

where$P \cdot Q$is the dot product of vectors $P$ and $Q$, and $|P|$ and $|Q|$ are the magnitudes (Euclidean norms) of vectors $P$ and $Q$, respectively.

Inner Product

The inner product (or dot product) between two vectors$P$and$Q$in an$N$-dimensional space is defined as the sum of the products of their corresponding components:

 \text{Inner Product}(P, Q) = P \cdot Q = \sum_{i=1}^{N} p_i q_i

Contribution

Contributions to FastVS are welcome! Please submit your pull requests to the repository or open an issue for any bugs or feature requests.

To Dos:

  • Clean up rust code
  • Support f32

License

FastVS is released under the MIT License. See the LICENSE file in the repository for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastvs-0.1.8.tar.gz (32.9 kB view details)

Uploaded Source

Built Distributions

fastvs-0.1.8-cp312-none-win_amd64.whl (808.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastvs-0.1.8-cp312-none-win32.whl (737.4 kB view details)

Uploaded CPython 3.12 Windows x86

fastvs-0.1.8-cp312-cp312-macosx_11_0_arm64.whl (904.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastvs-0.1.8-cp312-cp312-macosx_10_7_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

fastvs-0.1.8-cp311-none-win_amd64.whl (808.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastvs-0.1.8-cp311-none-win32.whl (737.5 kB view details)

Uploaded CPython 3.11 Windows x86

fastvs-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastvs-0.1.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

fastvs-0.1.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

fastvs-0.1.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

fastvs-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastvs-0.1.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

fastvs-0.1.8-cp311-cp311-macosx_11_0_arm64.whl (905.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastvs-0.1.8-cp311-cp311-macosx_10_7_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

fastvs-0.1.8-cp310-none-win_amd64.whl (808.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastvs-0.1.8-cp310-none-win32.whl (737.5 kB view details)

Uploaded CPython 3.10 Windows x86

fastvs-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastvs-0.1.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

fastvs-0.1.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

fastvs-0.1.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

fastvs-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastvs-0.1.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

fastvs-0.1.8-cp310-cp310-macosx_11_0_arm64.whl (905.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastvs-0.1.8-cp310-cp310-macosx_10_7_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

fastvs-0.1.8-cp39-none-win_amd64.whl (808.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastvs-0.1.8-cp39-none-win32.whl (737.8 kB view details)

Uploaded CPython 3.9 Windows x86

fastvs-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastvs-0.1.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

fastvs-0.1.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

fastvs-0.1.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

fastvs-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastvs-0.1.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

fastvs-0.1.8-cp39-cp39-macosx_11_0_arm64.whl (905.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastvs-0.1.8-cp39-cp39-macosx_10_7_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

fastvs-0.1.8-cp38-none-win_amd64.whl (807.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastvs-0.1.8-cp38-none-win32.whl (737.7 kB view details)

Uploaded CPython 3.8 Windows x86

fastvs-0.1.8-cp37-none-win_amd64.whl (808.0 kB view details)

Uploaded CPython 3.7 Windows x86-64

fastvs-0.1.8-cp37-none-win32.whl (737.6 kB view details)

Uploaded CPython 3.7 Windows x86

File details

Details for the file fastvs-0.1.8.tar.gz.

File metadata

  • Download URL: fastvs-0.1.8.tar.gz
  • Upload date:
  • Size: 32.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8.tar.gz
Algorithm Hash digest
SHA256 96137aca25a03ead79fa44cf0e2b23a8019783ca38d41bb9661df3dd1142060c
MD5 f22068da1e49d1b531321bb7643874ed
BLAKE2b-256 21cfe7e09cddd2322d6f6972d29776136e0ea9d88ec4287589fe49f1a73ffcd2

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp312-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 808.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 9788cdef2efcc23996736cff113a2e3a4e6636473779d7c096a8834d11604a6a
MD5 8f5148d2cafe95821337b405c0615ec0
BLAKE2b-256 28264472989ad74353e2dcc1d4be554031dffab237367f33eba925d7f912d8d4

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp312-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp312-none-win32.whl
  • Upload date:
  • Size: 737.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp312-none-win32.whl
Algorithm Hash digest
SHA256 24d1447275ffe647e6dc5aabe69603131b9400f9bfab83b3cbdf72498658ba94
MD5 6fc1ee32117b0e4324e0978a98cbc5e4
BLAKE2b-256 8867bd67bccc86577d0a22838e68331d31d5c445c9a96e882e557fc15a833b54

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 096133f1e60fa296a6dd2c7651312db34b3d8bd795813ccf5460d9cea9eb58e9
MD5 627e5d4ece7179a9146746066f831d43
BLAKE2b-256 fa765df81cc85e77d0288372c154f739f1475ef604c8b2ceba04b5bed6a095b1

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bf9408005279db232d4432ac5ba013ba6f5304e2390bdde8329ff7d393c796a8
MD5 852d314c791309f8d5d3609b80db1c5c
BLAKE2b-256 e8c823d6970a45983a65ae641f21d57ac34f0f96b976f80a332cfed3627e3fa0

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 808.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 36feab44ae812dcc09529316604317ca2d1542e031af970f253081a758ca0a7d
MD5 d019ed19db033bab7620a9d62daf9304
BLAKE2b-256 1bfe46763d2a4b225150b0fd9ca1aae5dbcbc752196de3da8821e4bc5b64adb4

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp311-none-win32.whl
  • Upload date:
  • Size: 737.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp311-none-win32.whl
Algorithm Hash digest
SHA256 395b60c14a2154fb17d4f8056abe7905ffee99b571ad1cbe57024e5d916a833f
MD5 adf98265209064faf036c6c2a60b6792
BLAKE2b-256 29c11dc818442d73f17ad58833d6c087f67d24354e9435c0c09b703dde6ed54e

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f726d82c4a1e48080066129738d44b9f40ef3bf6cbd82c5c30d3e9a1f960fd8d
MD5 905604af606d91b8043fd1cf846cc382
BLAKE2b-256 aef21335824ebb4fc157f847050ffa4be7d0c68dc35d7a8b3f5341734ff7ee91

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 975a8a9cfae0c3c151dc8a4e5536e79fcd11e4aafe3a9dc49a28e1bbb66406f8
MD5 55d40f5d16633169024c7b819b206e6a
BLAKE2b-256 522b35579ca84493cdd3f28ba1dd8da85792eaf9062defbfdbec94a4d286f1c8

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f2eb8150940d4f1abd0974ba869494c43cbbefe16ae1ba023eb4d65e5be68b07
MD5 9ca37ed86562c8e8e515da16bdfdec43
BLAKE2b-256 c0850b5ed7d35f7f23740d66f576aebd2cb610aaf05622d5630d280922e6b56d

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f1c05d5a16533185436bb1662a44d3ecb0d0885e45ae86509080be8c4dce910a
MD5 6432416389450cf17b81d021ba77d24b
BLAKE2b-256 7007e72cbc676f7722bf6516c7e258887bbabe472e4f2c931151672b83111596

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c178bf8d6311ecad81eb98be7fccfa8c448d0c9ff6e6060192c098f8bca7653
MD5 b4ad0cd358455d46ed9cdbf374b4e659
BLAKE2b-256 34b8319d448aedf0fa1ccf0451cef69679951b281955c60041af07644ec55286

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 428cb06cdcbc22b0c80bd84e33cfa3e01f7fd54efccd675304999bca81ad25ff
MD5 6a50d47dda46f0666e58117a351412b5
BLAKE2b-256 da2a31a25d0e2c0885e419d78a0b745484d0ec345352d38815b468b1dfe9692b

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a8e3111e216b26372625566b0af727a2a35065c0bc57d4cf43042eec320ab95
MD5 678c6d57c6de7a7d203cf7dfb871a01f
BLAKE2b-256 95f27b52f9f82cec6716638b66e47b11d05afa4462cd62cc542dc8a3213ad019

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a8f1c1ba14d5c5d073bc6539e2b90510413866395c4c442d270a67a396c4d891
MD5 17b98a83295d7578f4c3a9ce59a6784c
BLAKE2b-256 31294358593531623dc832965959b864c815e5ffd792d6d3f284f032ea686c51

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 808.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ce335ca8d1a44c367863d2bacfe1aafe129c54726bb4aed44b93fa448e687970
MD5 8cebfdfc1614534579a71118d0a015de
BLAKE2b-256 6adcaf561a58a2fe46dbdeee9e8cf6cc9e92c8dac23bd231288d7c5b86b21f0b

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp310-none-win32.whl
  • Upload date:
  • Size: 737.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp310-none-win32.whl
Algorithm Hash digest
SHA256 9832d06e927ac66cda93315cf63b288b980c95bd5d0fde518c783bd04b0b08a2
MD5 342472fd7f367253b8ebe7d5338d5987
BLAKE2b-256 185a5e8c5a6ad047e736ef7d5926162bdb7baedd520890c81ee41810be54d2c9

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d1a337e8e1a47b7661ed4f5dcc99580a625677d9bb260df712a0da58bedced5
MD5 4aa97ee83590af8c3a5dcd34f479ab97
BLAKE2b-256 75b8ae36bcfc7c27be58a27bc2973957c0d66896a70b66059e05186a7210f064

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bf6f96b507d76f68a544a8d5822383065e8e2c2263e82aae025fc318e405b249
MD5 c6bf1bf5a1fb38332f31d11bea950ecd
BLAKE2b-256 1d58f77b3fd41908e6ecaf8d56cdae510b65b58dd51059648076239c1f2f3dfb

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7594d98bb243674156896c892115568d6e04e627f10ad5f7b810e62b26c0fa91
MD5 8cf36774f4cdc78792c8a12604097dbc
BLAKE2b-256 ed465635f1d5573adb4dea97afd2f26328f16b98da30a4e15d85220bd4bacddd

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 49e00b110b3e61cd5631eac13f166b8e35108c5f0d28e75333e7d76f1e8ccd4d
MD5 011b4b617645e7851ec1289021503700
BLAKE2b-256 f1d69fc60db5d4aaa21d3caa5056e16739b565c0fd07e3827f3e6f289d60a34e

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86e1ead4be9f7b9a8b90452b474457a6d67c93e4a9f8f5ac1bb239f19d9aedf9
MD5 89557f5da44dd0fbc91c8e5cc8d770c0
BLAKE2b-256 3565f08282ab617016d193b9d4850febc3ce4951ddc8817472a93586299486dd

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 738c128c646c6ae359b74222cee4d366fd88ea0683a461ce8d5ed8ab16467104
MD5 99a07d4d0672bbf02e6ef3bfc03e7ff7
BLAKE2b-256 193b6f74d22ff937a52404f76c0cf346c8ab9d9d87d0f0cb6fb4fa356d343349

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edf35551bd89e8f7929e40b8f392f1211cf4927889b0c1af950ee4dfc815734d
MD5 0568cc491d331dbc21e3d3e83ff8f54c
BLAKE2b-256 43032bbce33460e6ec415ed141130c482104e91fdac9090e9121fae1feffafd5

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ef4feb91906353cc0e91a9fa9859cf698e7bfa3d10dc65324115252fcef84f76
MD5 01eb2ad128f08986331a02e24ea354e9
BLAKE2b-256 90b275b0d763a1df1ea3ea132adc59773843b22d3216d57badf22fb08a92b981

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 808.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c999a98c82386fa51e27b0df25553964fa3c4f5aa1b9d5c4b4ec327f05063968
MD5 2299b838f65c9de3b049585bb3e704d5
BLAKE2b-256 ae4fa13044d5ef2194784a57afca6bb83e9ac227ea5a69bbd90d2a3f2c53985e

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp39-none-win32.whl
  • Upload date:
  • Size: 737.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp39-none-win32.whl
Algorithm Hash digest
SHA256 914e9ed46c7ee288560de896dabe7975906d3e5920e6e06b4edf8ad9f85c0b98
MD5 d8d4a52ec8d966deeb9233e5ad539913
BLAKE2b-256 db2e0134da01488705b7d6b1bb8676a6c2313f945417e7be38287dc39231323f

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a590a729b6c24ae16980c59372ef690bfa8ea99f5924a23a9c9d52a4ed7caa10
MD5 babec0f9fafa5f06c86dd8af47822ba7
BLAKE2b-256 41f577f0bbfdb34ebdd476c9b4a5437227b11ce0aa68fc9747fbebf09b4de487

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d3ec6ed4d44558b43a230a625d4042679d09975cd03e33f18e4c8be92ce8192f
MD5 7c51fd80d5cfd85db74d19e3aecfa168
BLAKE2b-256 5fa852f6200a83f81dae243dc5bbb816d05cfe4bc4f77674070d6965646616b0

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b7f1a412ef62519b686c1cd81dedd4905430b1539b6da2f9e374860139a839d7
MD5 a56b729df348d242995688a9e2d0f623
BLAKE2b-256 aa86a548ca863dff75a9dc08539f217370a649e685c84f0a87af0c55116fbc28

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 84950dd55fe79c0071a4e43af5c72eaf45a8901f9c405513ac462dcabc79b518
MD5 cf2db7987f244364ae4eb60beaba2a95
BLAKE2b-256 b51ea7802c017fa873954460402206ac22d3f877c09542a55eb048824d71bd7b

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 862525bdbab537376f9592f305e8b70dd93e3839637514bdca0b7268adeb821c
MD5 44a7581660ea287487222b828f115d12
BLAKE2b-256 70afd1341f70dde2da88a335393dab08a2e7077b957c54e8420de5ab5a78816c

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bd094818f9365171b24acbbf90539c5f54eaedee611a987ab305fc1eb2758c5a
MD5 6674319290fc3fbb9ab819bb5bfea479
BLAKE2b-256 9046c1d47c1a804b09d778d43e540a5416b2a5cad54475a8a0ea9c76b58d4e58

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c057e8be5cd667e3a4ee99f2fa2768163c5225fd485dda92a5958a4636794ed1
MD5 35ed53945c952114d19a5f8d8fdb1d28
BLAKE2b-256 ea8016d65e3b1a1e15ea6983d53361e8fc420a45bb6c906e262876b91ace7586

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for fastvs-0.1.8-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 fbac239f363fa2037abf1be3295ff3c651bb30e1bde967e419d0eb8335352f0c
MD5 fe303e0c4bc5da18489972c3394dad8f
BLAKE2b-256 9767db912a8de236c7b66021f19633bf53aa121bd4964af945446d4f09fcc808

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp38-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 807.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 660b3da622298f4026397d21562af11ef0d1b287ea25bf7ea8d236c132862a25
MD5 7ce5e3dd4c7baf846db1e363da1b29fe
BLAKE2b-256 3676ac4070ed8bccf1a393470d9d9785a6f803126370c2e8fbe2c5bffeb659be

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp38-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp38-none-win32.whl
  • Upload date:
  • Size: 737.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp38-none-win32.whl
Algorithm Hash digest
SHA256 ce3d995f0654e1dd0b210b6723edbdbcb038f8bca961d7634c7f252933936c7d
MD5 c20eae948087b663cf6e2f1a48ff84dd
BLAKE2b-256 27e84574eb20957fd366b2b81dc0f163cad7547279417bf015a7a0123989b3b4

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp37-none-win_amd64.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 808.0 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a19e0a1a0c55854fc97c987aac664ec5200bed8efe0084db9201c535122356eb
MD5 283b9201acc4c49c0edff79b43306662
BLAKE2b-256 28008ef3e4e9ddcb30b5785a8d4f5321642b4c6d855d30df5d8929ad07ab7cb4

See more details on using hashes here.

File details

Details for the file fastvs-0.1.8-cp37-none-win32.whl.

File metadata

  • Download URL: fastvs-0.1.8-cp37-none-win32.whl
  • Upload date:
  • Size: 737.6 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for fastvs-0.1.8-cp37-none-win32.whl
Algorithm Hash digest
SHA256 871028056dc50ae6f1b3346213fcad305779b2c72d1cf06f051a668b328078e5
MD5 bf623fafbd83ecbea5181560451325aa
BLAKE2b-256 dd6d19ad24939ca3b3fafc5b4f8d20b5a26670697fdc4d0c684a5cd48c2ef83b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page