Skip to main content

Library with compilation of features for time series

Project description

FATS: Feature Analysis for Time Series
==============================

Summary: Compilation of some of the existing light-curve features.

Authors: Isadora Nun and Pavlos Protopapas

Contributors: Karim Pichara, Rahul Dave, Daniel Acuña, Nicolás Castro, Cristobal Mackenzie, Andrés Riveros and Ming Zhu

-----------------------------------------------------

Description: In time-domain astronomy, data gathered from the telescopes is usually represented in the form of light-curves. These are time series that show the brightness variation of an object through a period of time (for a visual representation see video below). Based on the variability characteristics of the light-curves, celestial objects can be classified into different groups (quasars, long period variables, eclipsing binaries, etc.) and consequently be studied in depth independently.

In order to characterize this variability, some of the existing methods use machine learning algorithms that build their decision on the light-curves features. Features, the topic of the following work, are numerical descriptors that aim to characterize and distinguish the different variability classes. They can go from basic statistical measures such as the mean or the standard deviation, to complex time-series characteristics such as the autocorrelation function.

In this document we present a library with a compilation of some of the existing light-curve features. The main goal is to create a collaborative and open tool where every user can characterize or analyze an astronomical photometric database while also contributing to the library by adding new features. However, it is important to highlight that this library is not restricted to the astronomical field and could also be applied to any kind of time series.

Our vision is to be capable of analyzing and comparing light-curves from all the available astronomical catalogs in a standard and universal way. This would facilitate and make more efficient tasks as modeling, classification, data cleaning, outlier detection and data analysis in general. Consequently, when studying light-curves, astronomers and data analysts would be on the same wavelength and would not have the necessity to find a way of comparing or matching different features. In order to achieve this goal, the library should be run in every existent survey (MACHO, EROS, OGLE, Catalina, Pan-STARRS, etc) and future surveys (LSST) and the results should be ideally shared in the same open way as this library.

---------------------------------------------------------

An extended explanation of the package is available at http://isadoranun.github.io/tsfeat/FeaturesDocumentation.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FATS-1.3.6.tar.gz (15.1 kB view details)

Uploaded Source

File details

Details for the file FATS-1.3.6.tar.gz.

File metadata

  • Download URL: FATS-1.3.6.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for FATS-1.3.6.tar.gz
Algorithm Hash digest
SHA256 d03ae14d9a569806e9a09a2ae82d0202973600aa0adfd9c4ed44d64b5b6b12f9
MD5 12169d7825b54975fab72f44ec96a80e
BLAKE2b-256 19321891ec6e2a4429862bfed8e2083d86375d09f1cc047bf8f284b238b942c7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page