FactSet Fundamentals client library for Python
Project description
FactSet Fundamentals client library for Python
Gain access to current, comprehensive, and comparative information on securities in worldwide developed and emerging markets. Composed of annual and interim/quarterly data, detailed historical financial statement content, per-share data, and calculated ratios, FactSet Fundamentals provides you with the information you need for a global investment perspective.
This Python package is automatically generated by the OpenAPI Generator project:
- API version: 2.1.0
- SDK version: 2.2.3
- Build package: org.openapitools.codegen.languages.PythonClientCodegen
For more information, please visit https://developer.factset.com/contact
Requirements
- Python >= 3.7
Installation
Poetry
poetry add fds.sdk.utils fds.sdk.FactSetFundamentals==2.2.3
pip
pip install fds.sdk.utils fds.sdk.FactSetFundamentals==2.2.3
Usage
- Generate authentication credentials.
- Setup Python environment.
-
Install and activate python 3.7+. If you're using pyenv:
pyenv install 3.9.7 pyenv shell 3.9.7
-
(optional) Install poetry.
-
- Install dependencies.
- Run the following:
[!IMPORTANT] The parameter variables defined below are just examples and may potentially contain non valid values. Please replace them with valid values.
Example Code
from fds.sdk.utils.authentication import ConfidentialClient
import fds.sdk.FactSetFundamentals
from fds.sdk.FactSetFundamentals.api import batch_processing_api
from fds.sdk.FactSetFundamentals.models import *
from dateutil.parser import parse as dateutil_parser
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
# Examples for each supported authentication method are below,
# choose one that satisfies your use case.
# (Preferred) OAuth 2.0: FactSetOAuth2
# See https://github.com/FactSet/enterprise-sdk#oauth-20
# for information on how to create the app-config.json file
#
# The confidential client instance should be reused in production environments.
# See https://github.com/FactSet/enterprise-sdk-utils-python#authentication
# for more information on using the ConfidentialClient class
configuration = fds.sdk.FactSetFundamentals.Configuration(
fds_oauth_client=ConfidentialClient('/path/to/app-config.json')
)
# Basic authentication: FactSetApiKey
# See https://github.com/FactSet/enterprise-sdk#api-key
# for information how to create an API key
# configuration = fds.sdk.FactSetFundamentals.Configuration(
# username='USERNAME-SERIAL',
# password='API-KEY'
# )
# Enter a context with an instance of the API client
with fds.sdk.FactSetFundamentals.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = batch_processing_api.BatchProcessingApi(api_client)
id = "id_example" # str | Batch Request identifier.
try:
# Returns the response for a Batch Request
# example passing only required values which don't have defaults set
api_response_wrapper = api_instance.get_batch_data(id)
# This endpoint returns a response wrapper that contains different types of responses depending on the query.
# To access the correct response type, you need to perform one additional step, as shown below.
if api_response_wrapper.get_status_code() == 200:
api_response = api_response_wrapper.get_response_200()
if api_response_wrapper.get_status_code() == 202:
api_response = api_response_wrapper.get_response_202()
pprint(api_response)
except fds.sdk.FactSetFundamentals.ApiException as e:
print("Exception when calling BatchProcessingApi->get_batch_data: %s\n" % e)
# # Get response, http status code and response headers
# try:
# # Returns the response for a Batch Request
# api_response_wrapper, http_status_code, response_headers = api_instance.get_batch_data_with_http_info(id)
# # This endpoint returns a response wrapper that contains different types of responses depending on the query.
# # To access the correct response type, you need to perform one additional step, as shown below.
# if api_response_wrapper.get_status_code() == 200:
# api_response = api_response_wrapper.get_response_200()
# if api_response_wrapper.get_status_code() == 202:
# api_response = api_response_wrapper.get_response_202()
# pprint(api_response)
# pprint(http_status_code)
# pprint(response_headers)
# except fds.sdk.FactSetFundamentals.ApiException as e:
# print("Exception when calling BatchProcessingApi->get_batch_data: %s\n" % e)
# # Get response asynchronous
# try:
# # Returns the response for a Batch Request
# async_result = api_instance.get_batch_data_async(id)
# api_response_wrapper = async_result.get()
# # This endpoint returns a response wrapper that contains different types of responses depending on the query.
# # To access the correct response type, you need to perform one additional step, as shown below.
# if api_response_wrapper.get_status_code() == 200:
# api_response = api_response_wrapper.get_response_200()
# if api_response_wrapper.get_status_code() == 202:
# api_response = api_response_wrapper.get_response_202()
# pprint(api_response)
# except fds.sdk.FactSetFundamentals.ApiException as e:
# print("Exception when calling BatchProcessingApi->get_batch_data: %s\n" % e)
# # Get response, http status code and response headers asynchronous
# try:
# # Returns the response for a Batch Request
# async_result = api_instance.get_batch_data_with_http_info_async(id)
# api_response_wrapper, http_status_code, response_headers = async_result.get()
# # This endpoint returns a response wrapper that contains different types of responses depending on the query.
# # To access the correct response type, you need to perform one additional step, as shown below.
# if api_response_wrapper.get_status_code() == 200:
# api_response = api_response_wrapper.get_response_200()
# if api_response_wrapper.get_status_code() == 202:
# api_response = api_response_wrapper.get_response_202()
# pprint(api_response)
# pprint(http_status_code)
# pprint(response_headers)
# except fds.sdk.FactSetFundamentals.ApiException as e:
# print("Exception when calling BatchProcessingApi->get_batch_data: %s\n" % e)
Using Pandas
To convert an API response to a Pandas DataFrame, it is necessary to transform it first to a dictionary.
import pandas as pd
response_dict = api_response.to_dict()['data']
simple_json_response = pd.DataFrame(response_dict)
nested_json_response = pd.json_normalize(response_dict)
Debugging
The SDK uses the standard library logging
module.
Setting debug
to True
on an instance of the Configuration
class sets the log-level of related packages to DEBUG
and enables additional logging in Pythons HTTP Client.
Note: This prints out sensitive information (e.g. the full request and response). Use with care.
import logging
import fds.sdk.FactSetFundamentals
logging.basicConfig(level=logging.DEBUG)
configuration = fds.sdk.FactSetFundamentals.Configuration(...)
configuration.debug = True
Configure a Proxy
You can pass proxy settings to the Configuration class:
proxy
: The URL of the proxy to use.proxy_headers
: a dictionary to pass additional headers to the proxy (e.g.Proxy-Authorization
).
import fds.sdk.FactSetFundamentals
configuration = fds.sdk.FactSetFundamentals.Configuration(
# ...
proxy="http://secret:password@localhost:5050",
proxy_headers={
"Custom-Proxy-Header": "Custom-Proxy-Header-Value"
}
)
Custom SSL Certificate
TLS/SSL certificate verification can be configured with the following Configuration parameters:
ssl_ca_cert
: a path to the certificate to use for verification inPEM
format.verify_ssl
: setting this toFalse
disables the verification of certificates. Disabling the verification is not recommended, but it might be useful during local development or testing.
import fds.sdk.FactSetFundamentals
configuration = fds.sdk.FactSetFundamentals.Configuration(
# ...
ssl_ca_cert='/path/to/ca.pem'
)
Request Retries
In case the request retry behaviour should be customized, it is possible to pass a urllib3.Retry
object to the retry
property of the Configuration.
from urllib3 import Retry
import fds.sdk.FactSetFundamentals
configuration = fds.sdk.FactSetFundamentals.Configuration(
# ...
)
configuration.retries = Retry(total=3, status_forcelist=[500, 502, 503, 504])
Documentation for API Endpoints
All URIs are relative to https://api.factset.com/content/factset-fundamentals/v2
Class | Method | HTTP request | Description |
---|---|---|---|
BatchProcessingApi | get_batch_data | GET /batch-result | Returns the response for a Batch Request |
BatchProcessingApi | get_batch_status | GET /batch-status | Returns the status for a Batch Request |
FactSetFundamentalsApi | get_fds_fundamentals_for_list | POST /fundamentals | Returns Company Fundamental Data. |
MetricsApi | get_fds_fundamentals_metrics | GET /metrics | Returns available FactSet Fundamental metrics and ratios. |
SegmentsApi | get_fds_segments_for_list | POST /segments | Returns Company Segment Data. |
Documentation For Models
- Batch
- BatchErrorObject
- BatchResult
- BatchResultResponse
- BatchStatus
- BatchStatusResponse
- ErrorObject
- ErrorObjectLinks
- ErrorResponse
- FiscalPeriod
- Fundamental
- FundamentalFiscalPeriod
- FundamentalRequestBody
- FundamentalValue
- FundamentalsRequest
- FundamentalsResponse
- IdsBatchMax30000
- Metric
- Metrics
- MetricsResponse
- Periodicity
- Segment
- SegmentRequestBody
- SegmentType
- SegmentValue
- SegmentsPeriodicity
- SegmentsRequest
- SegmentsResponse
- UpdateType
Documentation For Authorization
FactSetApiKey
- Type: HTTP basic authentication
FactSetOAuth2
- Type: OAuth
- Flow: application
- Authorization URL:
- Scopes: N/A
Notes for Large OpenAPI documents
If the OpenAPI document is large, imports in fds.sdk.FactSetFundamentals.apis and fds.sdk.FactSetFundamentals.models may fail with a RecursionError indicating the maximum recursion limit has been exceeded. In that case, there are a couple of solutions:
Solution 1: Use specific imports for apis and models like:
from fds.sdk.FactSetFundamentals.api.default_api import DefaultApi
from fds.sdk.FactSetFundamentals.model.pet import Pet
Solution 2: Before importing the package, adjust the maximum recursion limit as shown below:
import sys
sys.setrecursionlimit(1500)
import fds.sdk.FactSetFundamentals
from fds.sdk.FactSetFundamentals.apis import *
from fds.sdk.FactSetFundamentals.models import *
Contributing
Please refer to the contributing guide.
Copyright
Copyright 2022 FactSet Research Systems Inc
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for fds.sdk.FactSetFundamentals-2.2.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5367d496c023989e0d79ba892eba77b15e14ad3068b220726b700cd39ed2b29 |
|
MD5 | ba4a2def484a753f6c3cc1ec796f1403 |
|
BLAKE2b-256 | 3cc84b8858a7638c857fba4903ded2f52b4a3407ca3f58d1060ac07b193d2084 |