Skip to main content

Set of scripts to facilitate easy calculations of threshold displacement energies for materials in VASP/LAMMPS using ab initio/classical molecular dynamics.

Project description

findTDE

findTDE comprises a set of scripts to facilitate easy, high-throughput calculations of threshold displacement energies (TDEs) for materials using ab initio/classical molecular dynamics in VASP/LAMMPS. The threshold displacement energy is the minimum kinetic energy transfer from incident radiation to a lattice atom that produces a permanent defect. This property is useful for understanding the radiation hardness of a material, and it is a required parameter for binary collision approximation calculations (e.g., SRIM/TRIM).

Installation

Currently, there is no automatic installation method available. The files may be either downloaded manually or using git clone.

Usage

The find_tde script may be called directly from the command line with several options. The usage may be displayed using the help (-h) option. The convergence mode (-c) determines how subsequent kinetic energy values are chosen for the displacement event, either "standard" (adjust by 5 eV until opposite defect generation is found, then adjust by 1 eV until the TDE is found) or "midpoint" (adjust by 8 eV until opposite defect generation is found, then adjust by half the distance from the current energy to the nearest energy of opposite defect generation). The program selection (-p) chooses whether VASP or LAMMPS is used for the calculations. If LAMMPS is used, the force field file may be chosen (-f).

find_tde [-h] [-c <standard|midpoint>] [-p <vasp|lammps>] [-f <lmp_ff.type>]

The script is currently written to execute via Slurm workload manager. This can be adjusted temporarily to execute the appropriate program.

The script relies on a directory structure. Only the base directory (e.g., "project," can be named anything), main input file ("latt_dirs_to_calc.csv"), inputs directory ("inp"), and perfect supercell directory ("perfect") are required to be made and named as described. findTDE should be executed in the "project" directory. Each "displacement" directory, associated "energy" directories, and relevant .csv/.txt files are created by the program.

project
│   latt_dirs_to_calc.csv   
│
└───displacement1
│   │   displacement1_data.csv
│   │   displacement1_out.txt
│   │   KE_calcs_list.txt
│   │
│   └───energyA
│   |   │   program_inputs
│   |   │   program_outputs
│   |   │   ...
│   │
│   └───energyB
│   |   │   program_inputs
│   |   │   program_outputs
│   |   │   ...
│   │
│   └───...
│
└───...
│   
└───inp
│   │   INCAR_cgm
│   │   INCAR_md
│   │   KPOINTS
│   │   POSCAR
│   │   POTCAR
│   │   lmp_ff.type
│   │   ...
│   
└───perfect
|   │   OUTCAR

The input file "latt_dirs_to_calc.csv" is required to specify the displacement event. This can either be created manually, or by using the multi_tde.py accessory script. The heading of this file may be used to describe the file format. The bottom row of the file is read when findTDE is executed, and that info is used for that TDE calculation. The first value is a "pseudo" to correspond to the displacement direction, given as an integer number (changes with each unique direction) and either "L" or "S" (describes whether the direction is given as a lattice direction [u v w] or spherical direction (rho, phi, theta)). The "atom_type" and "atom_number" detail which atom in the supercell is given the velocity vector to simulate the displacement event (e.g., atom_type: ga and atom_number: 34 corresponds to the 34th Ga atom, as listed in the POSCAR file, being displaced). The initial kinetic energy "ke_i" and cutoff kinetic energy "ke_cut" (stops the program if a defect is not found below this kinetic energy) are then defined. The direction is then defined, either using lattice direction integer notation or spherical coordinate notation (may be floats).

########################################
# format of text file
# nL    atom_type    atom_number    ke_i    ke_cut    u    v    w
# n+1S    atom_type    atom_number    ke_i    ke_cut    r    p    t
########################################

Acknowledgements

The findTDE code was developed by Alexander Hauck, Dr. Mia Jin, and Dr. Blair Tuttle at The Pennsylvania State University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

findtde-1.0.3.tar.gz (33.2 kB view details)

Uploaded Source

Built Distribution

findtde-1.0.3-py3-none-any.whl (34.6 kB view details)

Uploaded Python 3

File details

Details for the file findtde-1.0.3.tar.gz.

File metadata

  • Download URL: findtde-1.0.3.tar.gz
  • Upload date:
  • Size: 33.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for findtde-1.0.3.tar.gz
Algorithm Hash digest
SHA256 3864f5857a4a1b0868eaa74fab0f238c38b9648b80908418130a2dfbfbc73c16
MD5 5b1f8a1f2f482bac5274a1e178c91899
BLAKE2b-256 c2ee024c19c5679c7ac4498d43e7390eaeaa804862fdcaa43fe306a73e1f4668

See more details on using hashes here.

File details

Details for the file findtde-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: findtde-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 34.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for findtde-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6222450caca5f599abd76bbb5c6d404dcd8f31d3b29fbc92f3f566b31414146b
MD5 a6b90cf462d944606f206654f2b5b943
BLAKE2b-256 c925e1f8dfa529572c933f2f4ab8510559c6f839e9266a0927215f221c23d82f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page