Skip to main content

Fink anomaly detection model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments: --dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments: --slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE') --tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.12.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.12.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.12.tar.gz
Algorithm Hash digest
SHA256 dc968e42fda5c8e1e3ab9e8f9c7f58d94b24f0bf19ba3647f7f5b40f755fc237
MD5 292545b2bd5402e7a5d757ea8bd85c44
BLAKE2b-256 b4f7f6a9cef494f68c78e93f030c5dfe899b4ac063ede9119c5724b7ff0dbf5d

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.12-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.12-py3-none-any.whl
Algorithm Hash digest
SHA256 6678f29dbdf855ce74bd436f7823c49b450d261e4d929d7dabb698990afa8652
MD5 f013e3c91bbe4a5232ac75b32d7c165c
BLAKE2b-256 77b7dbe430b8f824d6d7753303c86fdc6f69f5682f6aa05f84113c3d8eba5efb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page