Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.22.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.22.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.22.tar.gz
Algorithm Hash digest
SHA256 f126f37a847d3082af5570f18a63704c93a6bc319c89f625824be01e908a9d0a
MD5 85ee1f079a39c0da87fc2e0487fad2ea
BLAKE2b-256 591eb5e225fc5c1471ae7c0bd140012f4c0d405aba7198f9b72e2ee882440970

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.22-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.22-py3-none-any.whl
Algorithm Hash digest
SHA256 624bf7b6ff6956e408d418a05f501436518dbf2a8319d9befbdc86af7b8c3fc3
MD5 2b78218c431efd7a4ed159036ffaa4d0
BLAKE2b-256 13b296b26ad5a05a78fee0c5effc9533732e5ec4385706fb1751ba6e0b543022

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page