Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.28.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.28.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.28.tar.gz
Algorithm Hash digest
SHA256 f059a0808886ccdc8c834078caa8abc60e739d96e6b142133e57fcb16dc0d5c3
MD5 e35ecac89201ccf73c1ac3e73bc7ba13
BLAKE2b-256 234dc1282ae14543d6e3a9581f5b868768503aa4169e1e549527f0e2b0c1003c

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.28-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.28-py3-none-any.whl
Algorithm Hash digest
SHA256 d177c0d4964bb38785abc48edfc20f23a8a9c591d396753a7be050cf7de96da0
MD5 0dc532fc290071ad8b23eb474850cf25
BLAKE2b-256 6dfc448e9dac846412a802ffa25a895b352327a57e7b1cc0bcce1f35ea4085eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page