Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.29.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.29.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.29.tar.gz
Algorithm Hash digest
SHA256 6f78fe639f650e0471aa1e36fd7c930cefa82309c9212b8aeedb08dbbe998ccc
MD5 19967feeb5095fc8b44a1636b9ef8d10
BLAKE2b-256 c7f700b22c20291088ddb8257ccf48dad5b9925b64e57b3575d34e47037f2052

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.29-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.29-py3-none-any.whl
Algorithm Hash digest
SHA256 4c841e7108b79b640064e9ea503cf2ca0fdc4ab1d522fab359de40e23c3cab0f
MD5 e2596c90578e1afba9d49fe9ec33edec
BLAKE2b-256 d38de2b9087bbcb68396a3ffdfb6a7008a5735c2f9458d6b8b1a7020cb4d69a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page