Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.33.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.33.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.33.tar.gz
Algorithm Hash digest
SHA256 2c42cd6fee93e397cacc065b9297cfcbb7e436765e388710969c521c11d226cc
MD5 74882f9e392f39a58028f2ad8f08ae94
BLAKE2b-256 5ee3ed383c677d4e6e36cb2fda7dfe155726ec95043bb1754d8967d70c076f94

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.33-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.33-py3-none-any.whl
Algorithm Hash digest
SHA256 a4060145d3e08bded361bd0d426a1d9879355e5ffea6ffa441ac9b1ddb37335b
MD5 12abc2d572f6b4c7c614375b166de1f2
BLAKE2b-256 455808ab2b4f2e37a939b74a3df77375a7e3a41d84cab740b9dfbe099b719c03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page