Skip to main content

Genetic algorithms for n-dimensional function maximization.

Project description

fmga

fmga (function maximization through genetic algorithms) is a package that takes a genetic algorithm approach to maximization problem of non-convex objective functions in multiple dimensions.

The objective function doesn't have to be differentiable, or even continuous in the specified domain!
The idea is to sample an evolving population of points converging to the function maximum over many iterations.

The population of n-dimensional points undergoes random mutations - and is selected through elitism along with breeding with selection weights inversely proportional to fitness and diversity ranks.

Installation

Install with pip:

pip install fmga

Import within the python script with:

import fmga

Execution

Given a function on multiple variables, say:

def f(x, y, z):
    return x - math.sin(y) * z

Pass this function as the objective_function argument to the .maximize() method (lambdas work too!).

best_point = fmga.maximize(f, population_size=60, dimensions=3)

The maximize() method creates a Population of Point objects, calls the .converge() method on the Population object, and finally, returns a Point object representing the n-dimensional point with best fitness through the .best_estimate() method.

print(best_point, best_point.fitness)

fmga also supports a variable number of dimensions to optimise over, passed as the dimensions argument, which defaults to the number of arguments of the objective function passed.

If you wish to interact with the Population object directly, you can. Both of the following work:

population = fmga.Population(f, population_size=60, dimensions=3)
population = fmga.Population(population_size=60, objective_function=f, dimensions=3)

If you wish to define custom boundaries, create a list of tuples, for each dimension. Default boundaries are (0, 100). (This is different than in versions 1.x)

boundaries = [(0, 2.5), (0, 10)]

and pass this as the boundaries argument to the Population constructor or the maximise() method:

population = fmga.Population(f, population_size=60, boundaries=boundaries)
best_point = fmga.maximize(f, population_size=60, boundaries=boundaries)

Note that the default range for missing dimensions is (0, 100).
The population can be set to breed and iterate by using the .converge() method.

population.converge(iterations=20)

To perform only one iteration of breeding and mutating, do:

population.iterate()

Access population mean fitness and mean L1 diversity stats through the .mean_fitness and .mean_diversity attributes:

print(population.mean_fitness, population.mean_diversity)

The .best_estimate() method returns the point closest to the function point of maxima in the population, as a Point object.

best_point = population.best_estimate()

Every Point object has the coordinates attribute, a numpy array signifying the coordinates of point. To find the value of the function at this point, use the fitness attribute.

print(best_point.coordinates)
print(best_point.fitness)

Population Class Methods

The Population constructor takes the following arguments, in order:

objective_function The function to maximize!
population_size (default = 60) Number of points in the population.
boundaries (default = (0, 100) for every dimension) Must be a list of tuples. The tuple indicates the domain where the points are spread along that dimension.
elite_fraction (default = 0.1) Fraction of the population's points to be kept as elite during breeding. Must be between 0 and 1, inclusive.
mutation_probability (default = 0.05) How likely is is for a single point to mutate - this probability is the same for all points in the population. Must be between 0 and 1, inclusive.
mutation_range (default = 5) The range of the mutation when it does occur. Note that the point will never mutate out of the domain defined!
verbose (default = 2) How much output to be displayed when iterating population after population. Must take values 0, 1 or 2 with 2 representing the most output, and 0 representing none.
dimensions (default = number of arguments of objective_function) The dimensionality of the points and the number of variables to maximize over.

The maximize() method takes all of the above in the same order, as well as a iterations argument, defaulting to 15, signifying the number of iterations that the underlying population undergoes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fmga-2.2.0.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

fmga-2.2.0-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file fmga-2.2.0.tar.gz.

File metadata

  • Download URL: fmga-2.2.0.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/3.5.2

File hashes

Hashes for fmga-2.2.0.tar.gz
Algorithm Hash digest
SHA256 acd32f7accff3da97ecf1692ab6f92cb4b2426694c28a95835094e8809f00c9f
MD5 3f21f291690a7b2085dbd7e66bb409ea
BLAKE2b-256 b569f13bfeea663c683f0b8f8599ffc525cf553da6509e1034f51fec3f440395

See more details on using hashes here.

File details

Details for the file fmga-2.2.0-py3-none-any.whl.

File metadata

  • Download URL: fmga-2.2.0-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/3.5.2

File hashes

Hashes for fmga-2.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c2ea909f5d242d69b2db5465bc981d6d1bc8e4b8d8bb6968c6bc74534f7396fe
MD5 3d1cb636ae915a08a74d04126d6ddebd
BLAKE2b-256 03223d8c29245dc4be10983b1e7c07c465abba74c9a4fe67550ffdb1a297822f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page