Skip to main content

A simple PyTorch implementation of focal loss.

Project description

focal-loss-pytorch

Simple vectorized PyTorch implementation of binary unweighted focal loss as specified by [1].

References

[1] Lin, T. Y., et al. "Focal loss for dense object detection." arXiv 2017." arXiv preprint arXiv:1708.02002 (2002).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

focal_loss_pytorch-0.0.1.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

focal_loss_pytorch-0.0.1-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file focal_loss_pytorch-0.0.1.tar.gz.

File metadata

  • Download URL: focal_loss_pytorch-0.0.1.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for focal_loss_pytorch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b83c56208bd4e68d6cd513f25ab86e2df3e544520be10c5814786f768686816a
MD5 620fac2c29c79a431fa9a821b8906be1
BLAKE2b-256 3db063390c9bdbe2e7f8f9bcaa1a7b6d28462f21a7d56654362b2be3605138c3

See more details on using hashes here.

File details

Details for the file focal_loss_pytorch-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for focal_loss_pytorch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0e4a1969394d6913fa27ca367fb815a29f2069ec17f11c7e22c628e6d9c20363
MD5 9334bcb7c319a80a9a5a9c2464c7450c
BLAKE2b-256 b1be8cd5f58eb74b933e10861dc518c151ee1b65264a2c7f5ac2f09839b8ac7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page