Skip to main content

A package for forensic face examination

Project description

forensicface

Install

pip install forensicface

Os arquivos onnx dos modelos de detecção (det_10g.onnx), pose (1k3d68.onnx) e gênero/idade (genderage.onnx) devem estar na pasta ~/.insightface/model/<model_name>/

O arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx) deve estar na pasta ~/.insightface/model/<model_name>/adaface/

O arquivo onnx do modelo de qualidade CR_FIQA (cr_fiqa_l.onnx) deve estar na pasta ~/.insightface/model/<model_name>/cr_fiqa/

O modelo padrão é denominado sepaelv2. A partir da versão 0.1.5 é possível utilizar outros modelos.

Como utilizar

Importação da classe ForensicFace:

from forensicface.app import ForensicFace

Instanciamento do ForensicFace:

ff = ForensicFace(det_size=320, use_gpu=True, extended=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
set det-size: (320, 320)

Processamento básico de imagens

Obter pontos de referência, distância interpupilar, representação vetorial, a face alinhada com dimensão fixa (112x112), estimativas de sexo, idade, pose (pitch, yaw, roll) e qualidade.

results = ff.process_image_single_face("obama.png")
results.keys()
/home/rafael/miniconda3/envs/ffdev/lib/python3.10/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
  P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4

dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'bbox', 'aligned_face', 'gender', 'age', 'pitch', 'yaw', 'roll', 'fiqa_score'])

Comparar duas imagens faciais e obter o escore de similaridade.

ff.compare("obama.png", "obama2.png")
0.8556093

Agregar embeddings de duas imagens faciais em uma única representação, com ponderação por qualidade

agg = ff.aggregate_from_images(["obama.png", "obama2.png"], quality_weight=True)
agg.shape
(512,)

Estimativa de qualidade CR-FIQA

Estimativa de qualidade pelo método CR-FIQA

Para desabilitar, instancie o forensicface com a opção extended = False:

ff = ForensicFace(extended=False)

Obs.: a opção extended = False também desabilita as estimativas de sexo, idade e pose.

good = ff.process_image("001_frontal.jpg")
bad = ff.process_image("001_cam1_1.jpg")
good["fiqa_score"], bad["fiqa_score"]
(2.3786173, 1.4386057)

Crédito dos modelos utilizados

  • Detecção, gênero (M/F), idade e pose (pitch, yaw, roll): insightface

  • Reconhecimento: adaface

  • Estimativa de qualidade: CR-FIQA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forensicface-0.3.3.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

forensicface-0.3.3-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file forensicface-0.3.3.tar.gz.

File metadata

  • Download URL: forensicface-0.3.3.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.3.tar.gz
Algorithm Hash digest
SHA256 335cb6dbb4b5d3c83582fdcfbfe0a752af9c806558407545d1ee5ebd74134e20
MD5 685f74acaa3d3e085d8f6a3ff1b1881f
BLAKE2b-256 0ab9a7440f5bbc0a84ca02159a2f032037824db83c872a9313f30945f46e388f

See more details on using hashes here.

File details

Details for the file forensicface-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: forensicface-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 bb845e6697ee33852b0e1738ebc81c0591fb715e58fd206ad40f56fe08a92367
MD5 60c01c234e91906453c9533c987218cb
BLAKE2b-256 ca91d6ccaaafa141ba54a0baf2a7fb91033e2dd593cb7c6588fffb1ec29bb19b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page