Skip to main content

A package for forensic face examination

Project description

forensicface

Install

pip install forensicface

Os arquivos onnx dos modelos de detecção (det_10g.onnx), pose (1k3d68.onnx) e gênero/idade (genderage.onnx) devem estar na pasta ~/.insightface/models/<model_name>/

O arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx) deve estar na pasta ~/.insightface/models/<model_name>/adaface/

O arquivo onnx do modelo de qualidade CR_FIQA (cr_fiqa_l.onnx) deve estar na pasta ~/.insightface/models/<model_name>/cr_fiqa/

O modelo padrão é denominado sepaelv2. Se você utilizar sepaelv2 como <model_name> não será preciso passar o nome do modelo durante a inicialização.

Como utilizar

Importação da classe ForensicFace:

from forensicface.app import ForensicFace

Instanciamento do ForensicFace:

ff = ForensicFace(det_size=320, use_gpu=True, extended=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
set det-size: (320, 320)

Processamento básico de imagens

Obter pontos de referência, distância interpupilar, representação vetorial, a face alinhada com dimensão fixa (112x112), estimativas de sexo, idade, pose (pitch, yaw, roll) e qualidade.

results = ff.process_image_single_face("obama.png")
results.keys()
/home/rafael/miniconda3/envs/ffdev/lib/python3.10/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
  P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4

dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'bbox', 'aligned_face', 'gender', 'age', 'pitch', 'yaw', 'roll', 'fiqa_score'])

Comparar duas imagens faciais e obter o escore de similaridade.

ff.compare("obama.png", "obama2.png")
0.8556093

Agregar embeddings de duas imagens faciais em uma única representação, com ponderação por qualidade

agg = ff.aggregate_from_images(["obama.png", "obama2.png"], quality_weight=True)
agg.shape
(512,)

Estimativa de qualidade CR-FIQA

Estimativa de qualidade pelo método CR-FIQA

Para desabilitar, instancie o forensicface com a opção extended = False:

ff = ForensicFace(extended=False)

Obs.: a opção extended = False também desabilita as estimativas de sexo, idade e pose.

good = ff.process_image("001_frontal.jpg")
bad = ff.process_image("001_cam1_1.jpg")
good["fiqa_score"], bad["fiqa_score"]
(2.3786173, 1.4386057)

Crédito dos modelos utilizados

  • Detecção, gênero (M/F), idade e pose (pitch, yaw, roll): insightface

  • Reconhecimento: adaface

  • Estimativa de qualidade: CR-FIQA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forensicface-0.3.6.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

forensicface-0.3.6-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file forensicface-0.3.6.tar.gz.

File metadata

  • Download URL: forensicface-0.3.6.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.6.tar.gz
Algorithm Hash digest
SHA256 5aa87c616fd3f49220eddb0e82e799359dc205c003eb50d3e3aab9d946e489fa
MD5 72faf138aac07990a75b4b249402857f
BLAKE2b-256 8fdbec8194ee6988e6b8611225570b6ef7ff7dabbc6c74cd65ce81e506cfd59b

See more details on using hashes here.

File details

Details for the file forensicface-0.3.6-py3-none-any.whl.

File metadata

  • Download URL: forensicface-0.3.6-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b9a567e869b7ed42f1ee8345adc267146363dc35f598bb9a37ba092c0b12cea0
MD5 b020102d26c543203802be516fa84429
BLAKE2b-256 1803b9edebdadf3a892cd5ef65b7d7c092e518337da5f22ee075396377a19c5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page