Skip to main content

A tool for learning about and pre-processing pdf forms.

Project description

FormFyxer

A Python package with a collection of functions for learning about and pre-processing pdf forms and associated form fields. This processing is done with an eye towards interoperability with the Suffolk LIT Lab's Document Assembly Line Project.

Installation and updating

Use the package manager pip to install FormFyxer. Rerun this command to check for and install updates.

pip install git+https://github.com/SuffolkLITLab/FormFyxer

Functions

formfyxer.reCase(text)

Reformats snake_case, camelCase, and similarly-formated text into individual words.

Parameters:

  • text : str

Returns:

A string where words combined by cases like snake_case are split back into individual words.

Example:

>>> import formfyxer
>>> formfyxer.reCase("Reformat snake_case, camelCase, and similarly-formated text into individual words.")
'Reformat snake case, camel Case, and similarly formated text into individual words.'

back to top

formfyxer.regex_norm_field(text)

Given an auto-generated field name (e.g., those applied by a PDF editor's find form feilds function), this function uses regular expressions to replace common auto-generated field names for those found in our standard field names.

Parameters:

  • text : str A string of words, such as that found in an auto-generated field name (e.g., those applied by a PDF editor's find form feilds function).

Returns:

Either the original string/field name, or if a standard field name is found, the standard field name.

Example:

>>> import formfyxer
>>> formfyxer.regex_norm_field("your name")
'users1_name'

back to top

formfyxer.reformat_field(text,max_length=30)

Given a string of words, this function provides a summary of the string's semantic content by boiling it down to a few words. It then reformats these keywords into snake_case.

Parameters:

  • text : str A string of words.
  • max_length : int An integer setting the maximum length of your field name.

Returns:

A snake_case string summarizing the input sentence.

Example:

>>> import formfyxer
>>> reformat_field("this is a variable where you fill out your name")
'variable_fill_name'

back to top

formfyxer.normalize_name(jur,group,n,per,last_field,this_field)

This function will use the above functions to produce a field name conforming to the format of our standard field names. It does this first by applying reCase() to the text of a field. It then applies regex_norm_field(). If a standard field name is NOT found, it makes use of a machine learning model we have trained to classify the text as one of our standard field names. If the model is confident in a classification, it changes the text to that field name. If it us uncertian, it applies reformat_field(). The end result is that you can feed in a field name and receive output that has been converted into either one of our standard fields or a string of similar formatting.

Parameters:

  • jur : str The two-letter US postal jurisdiction code (e.g., MA).
  • group : str Eventually this should be a LIST issue, but right now it can be anything.
  • n : int The count of what number this field this is on its form (e.g., if it's the first field n=1)
  • per : float {0-1) n divided by the total number of fields on this form. That is, the percentage of the form that completion of this field will result in
  • last_field : str The normalized field name of the field that preceeded this one.
  • this_field : str The un-normalized (raw) field name of the field you are looking to normalize.

Returns:

object

Example:

>>> import formfyxer
>>> normalize_name("UT",None,2,0.3,"null","Case Number")
('*docket_number', 1.0)

back to top

formfyxer.spot(text,lower=0.25,pred=0.5,upper=0.6,verbose=0)

A simple wrapper for the LIT Lab's NLP issue spotter Spot. In order to use this feature you must edit the spot_token.txt file found in this package to contain your API token. You can sign up for an account and get your token on the Spot website.

Given a string, this function will return a list of LIST entities/issues found in the text. Items are filtered by estimates of how likely they are to be present. The values dictating this filtering are controlled by the optional lower, pred, and upper paremeters. These refer to the lower bound of the predicted likelihood that an entity is present, the predicted likelihood it is present, and the upper-bound of this prediction respectively.

Parameters:

  • text : str Text describing some fact pattern.
  • lower : float between 0 and 1, default 0.25 Defines the cutoff for the lower bound of a prediction (lower) necessary to trigger inclusion in the results. That is, the lower bound of a prediction must exceed lower for it to appear in the results.
  • pred : float between 0 and 1, default 0.5 Defines the cutoff for the prediction (pred) necessary to trigger inclusion in the results. That is, the prediction must exceed pred for it to appear in the results.
  • upper : float between 0 and 1, default 0.6 Defines the cutoff for the upper bound of a prediction (upper) necessary to trigger inclusion in the results. That is, the upper bound of a prediction must exceed upper for it to appear in the results.
  • verbose : 0 or 1, default 0 If set to 0 will return only a list of LIST IDs. If set to 1, will return a full set of Spot results.

Returns:

A list of LIST entities/issues found in the text.

Example:

>>> import formfyxer
>>> formfyxer.spot("my landlord kicked me out")
['HO-02-00-00-00', 'HO-00-00-00-00', 'HO-05-00-00-00', 'HO-06-00-00-00']

>>> formfyxer.spot("my landlord kicked me out", verbose=1)
{'build': 9,
 'query-id': '1efa5a098bc24f868684339f638ab7eb',
 'text': 'my landlord kicked me out',
 'save-text': 0,
 'cutoff-lower': 0.25,
 'cutoff-pred': 0.5,
 'cutoff-upper': 0.6,
 'labels': [{'id': 'HO-00-00-00-00',
   'name': 'Housing',
   'lower': 0.6614134886446631,
   'pred': 0.7022160833303629,
   'upper': 0.7208275781222152,
   'children': [{'id': 'HO-02-00-00-00',
     'name': 'Eviction from a home',
     'lower': 0.4048013980740931,
     'pred': 0.5571460102525152,
     'upper': 0.6989976788434928},
    {'id': 'HO-05-00-00-00',
     'name': 'Problems with living conditions',
     'lower': 0.3446066253503793,
     'pred': 0.5070074487913626,
     'upper': 0.6326627767849852},
    {'id': 'HO-06-00-00-00',
     'name': 'Renting or leasing a home',
     'lower': 0.6799417713794678,
     'pred': 0.8984004824420323,
     'upper': 0.9210222500232965,
     'children': [{'id': 'HO-02-00-00-00',
       'name': 'Eviction from a home',
       'lower': 0.4048013980740931,
       'pred': 0.5571460102525152,
       'upper': 0.6989976788434928}]}]}]}

back to top

formfyxer.parse_form(fileloc,title=None,jur=None,cat=None,normalize=1,use_spot=0,rewrite=0)

Read in a pdf with pre-existing form fields, pull out basic stats, attempt to normalize its field names, and re-write the file with the new fields (if rewrite=1).

Parameters:

  • fileloc : the location of the pdf file to be processed.
  • title : str, default None The title of the form. If set to None the parser will make a best guess.
  • jur : str, default None The two-letter US postal jurisdiction code (e.g., MA).
  • cat: list, default None Eventually this should be a LIST issue, but right now it can be anything.
  • normalize : {0 or 1}, default 1 O will not attempt to normalize the form fields. 1 will.
  • use_spot : {0 or 1}, default 0 1 will use spot to guess at LIST issues covered by this form. 0 will skip this.
  • rewrite : {0 or 1}, rewrite 0 1 will attempt to write over the original file with the normalized fields (assuming normalize set to 1). O will leave the original file as is.

Returns:

Object containing a set of stats for the form. See below

Example:

>>> import formfyxer
>>> stats = formfyxer.parse_form("sample.pdf",title=None,jur="UT",cat=None,normalize=0,use_spot=0,rewrite=0)
>>> stats
{'title': 'Waiver of',
 'category': None,
 'pages': 2,
 'reading grade level': 7.5,
 'list': [],
 'avg fields per page': 0.0,
 'fields': [],
 'fields_conf': [],
 'fields_old': [],
 'text': 'Waiver of . Rights. . Approved Board of District Court Judges . December 17, 2010. . Revised . November 26. , 2019. . Page . 1. . of . 2. . . . . Name. . . . . Address. . . . . City, State, Zip. . . . . Phone. . . . Check your email. . You will receive information and . documents at this email address. . . . Email. . In the District Court of Utah. . Judicial District Count. y. . Court Address . . In the Matter of the Adoption of. . . . . (. . ) . . Waiver . of Rights. . . . . . Case Number. . . . . . Jud. ge. . . . . . Commissioner. . Do not sign this document without reading it. . Do not sign it unless everything . stated is true and correct. . If you have any questions, . talk with. . an attorney. . . . . . You have the right to be notified of hearings and . to be served with papers in this . matter. You have the right to intervene and oppose the adoption. . By signing this . document you are giving up . these. . rights. . . . . . If you . want to waive your rights. , complete this form, sign it, . and . return. . it . to the . Petitioner. . . . . . If yo. u . want to intervene and . oppose the adoption, . file a motion to intervene . with . this. . court. . within 30 days after the . Notice of Petition to Adopt. . was served on you. . . 1. . . . I make this statement free from . duress. . . . Waiver of . Rights. . Approved Board of District Court Judges . December 17, 2010. . Revised . November 26. , 2019. . Page . 2. . of . 2. . . 2. . . . I am the . adoptee. . . [ ] . Guardian. . without the right. . to consent to the adoption. . [ ] . Custodian. . [ ] . S. p. ouse. . 3. . . . I understand that. : . . . . I have the right to be notified of hearings and to be served with papers in this . matter. . . . . I have the right to intervene and oppose the adoption. . . . . By signing this document . I am. . givin. g up . these. . rights. . . . 4. . . . Understanding all of this, . I . voluntarily . waive my right to . be notified of hearings . and served with papers in this matter. , and. . I voluntarily waive my right to . intervene in this matter. . . Do not sign this document without reading it. . Do n. ot sign it unless everything . stated is true and correct. . If you have any questions, . talk with. . an attorney. . . . . . I declare under . criminal . penalty . under the law of Utah. . that everything stated . in this document is true. . . . Signed at . (city, and state or country) . . . . Sign. atu. . . . Date. . Printed Name'}

back to top

formfyxer.cluster_screens(fields,damping=0.7)

This function will take a list of snake_case field names and group them by semantic similarity.

Parameters:

  • files : list A list of snake_case field names.
  • damping : float A number betwen 0.5 and 1 controlling how similar members of a group need to be.

Returns:

An object grouping together similar field names.

Example:

>>> import formfyxer
>>> fields= [
        "users1_name",
        "users1_birthdate",
        "users1_address_line_one",
        "users1_address_line_two",
        "users1_address_city",
        "users1_address_state",
        "users1_address_zip",
        "users1_phone_number",
        "users1_email",
        "plantiffs1_name",
        "defendants1_name",
        "petitioners1_name",
        "respondents1_name",
        "docket_number",
        "trial_court_county",
        "users1_signature",
        "signature_date"
        ]
>>> cluster_screens(fields,damping=0.7)
{'screen_0': ['users1_name',
  'users1_birthdate',
  'users1_address_line_one',
  'users1_address_line_two',
  'users1_address_city',
  'users1_address_state',
  'users1_address_zip',
  'users1_phone_number',
  'users1_email',
  'users1_signature'],
 'screen_1': ['plantiffs1_name',
  'defendants1_name',
  'petitioners1_name',
  'respondents1_name'],
 'screen_2': ['docket_number'],
 'screen_3': ['trial_court_county'],
 'screen_4': ['signature_date']}

back to top

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formfyxer-0.0.5.tar.gz (124.1 kB view details)

Uploaded Source

Built Distribution

formfyxer-0.0.5-py3-none-any.whl (124.6 kB view details)

Uploaded Python 3

File details

Details for the file formfyxer-0.0.5.tar.gz.

File metadata

  • Download URL: formfyxer-0.0.5.tar.gz
  • Upload date:
  • Size: 124.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for formfyxer-0.0.5.tar.gz
Algorithm Hash digest
SHA256 9db7999488cfcd05ad74fae2b314514575166640bf1261c084f5c26befc940b4
MD5 cb27618356a8f5613862e1b30ede6cdb
BLAKE2b-256 9da544076a067d8cf8b1342e5b61025a5681ebbc719bd7ec8ac5c3241306fe52

See more details on using hashes here.

File details

Details for the file formfyxer-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: formfyxer-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 124.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for formfyxer-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 fa9ff1986717e9505eb61f7f62c9f60eac94c41f692bd23556a987812e590c6e
MD5 60ab66d715278cd0ca320f41c4e42b89
BLAKE2b-256 bb7637115f080be4e8ad7cbc618a1a11ed0eff64b64a5df4cb57872f998d4481

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page